博碩士論文 109821602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.145.153.251
姓名 方莎南(ULFAH HASANAH)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
(Selenocystine enhances Cisplatin sensitivity by inducing DNA Damage and inhibiting DNA repair pathways in Human Hepatocellular Carcinoma)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性
★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 硫酸還原菌與脫鹵球菌共培養系統中生物性硫化亞鐵的生成與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 順鉑是一種 DNA 損傷劑,是多種癌症的常用化療藥物,已顯示其在提供副作用和產生耐
藥性方面的局限性。聯合使用對正常細胞毒性較小的藥物可能會為提高順鉑化療的療效提供解
決方案。硒代胱氨酸已被證明具有抗癌作用和靶向癌細胞而不是非癌細胞系的選擇性機制。本
研究旨在探討順鉑 (cDDP) 和硒代胱氨酸 (SeC) 的聯合治療是否可以提高對肝癌細胞的治療
效果。我們發現在 HepG2 和 Hep3B 細胞中,SeC 預處理後聯合 cDDP 比個別單獨處理表現出
更多的抑製作用,而在 L- 02 正常肝細胞中僅顯示出很小的影響。這種顯著降低與 DNA 損傷
反應相關,因為 cDDP 和 SeC 已被證明具有靶向 DNA 損傷的能力。在遺傳毒性水平上,10 µM
SeC 預處理 1 小時,隨後 5 µM cDDP 預處理 24 小時在鹼性和中性彗星試驗中產生顯著的
DNA 損傷,表明單鍊和雙鏈斷裂。隨後 H2AX 的磷酸化作為 DNA 損傷生物標誌物導致 DNA 修
復途徑的激活。為了確定雙鏈斷裂 (DSB) DNA 的反應,我們研究了同源重組 (HR) 和非同源
末端連接 (NHEJ) 修復途徑的含義。同源重組(HR) 測定結果和 RAD51 蛋白表達水平表明,單
一和聯合藥物治療抑制 HR 修復活性,5 µM 順鉑在 HepG2 中表現出最顯著的抑製作用。另一
個 DSB 修復途徑,非同源末端連接 (NHEJ) 顯示 Ku-70 和 Ku-80 的表達水平沒有顯著影響,
但參與 NHEJ 的下游蛋白如 Artemis、XRCC4 和 DNA 連接酶 IV 導致聯合治療顯著降低。這
些結果表明,SeC 和 cDDP 的聯合處理可以通過 HR 和 NHEJ 阻斷 DNA DSB 修復途徑。總之,
我們的研究表明,硒代胱氨酸可以選擇性地增強順鉑敏感性,通過誘導 DNA 損傷和抑制 DNA
修復途徑來促進細胞死亡。
摘要(英) Cisplatin, a DNA damaging agent, is the common chemotherapy drug for various kind
of cancer which has been shown its limitation in providing side effects and developing
resistance. Combining drugs with less toxicity to normal cells may enhance the efficacy of
cisplatin chemotherapy. Selenocystine is proven to have anticancer effect and selective
mechanism by targeting cancer cells but not non-cancerous cell lines. The current study is
aimed to investigate whether a combination treatment between Cisplatin (cDDP) and
Selenocystine (SeC) may improve the therapeutic effect against liver cancer cells. We found
out that pretreatment SeC followed by cDDP exhibited more inhibition than HepG2 or Hep3B
cells with the treatment of single drug exposure, while there was only little effect shown in L02 normal liver cells. This significant decrease was correlated with DNA damage response as
both cDDP and SeC have been proven their ability to elicit DNA damage. In the genotoxicity
level, pretreatment 10 µM SeC for 1 hour, followed by 5 µM cDDP for 24 hours, generated
significant DNA damage in alkaline and neutral comet assay, indicating single- and doublestrand breaks occurrence. Subsequent phosphorylation of H2AX, DNA Double Strand Break
(DSB) of biomarker, resulted in activation of DNA repair pathways. To determine the
response of DSBs, we investigated the implication of Homologous Recombination (HR) and
Non-Homologous End-Joining (NHEJ) repair pathways. We observed that significant
increase of RAD51 level treated by cDDP can be suppressed by pretreatment of SeC.
Moreover, combination treatment exhibited the most significant blocking of HR repair
activity in HepG2 cells compared to each single drug exposure. Another DSB repair pathway,
Non-Homologous End-Joining (NHEJ) showed that expression level of Ku-70 and Ku-80
showed no considerable effect, but downstream proteins involved in NHEJ such as Artemis,
XRCC4, and DNA Ligase IV resulted in a significant decrease by combination treatment.
These results suggested that combination treatment of SeC and cDDP can block DNA DSBs
repair pathways via HR and NHEJ. Taken together, our study demonstrated that
Selenocystine can selectively enhance Cisplatin sensitivity to promote cell death through
induction of DNA damage and inhibition of DNA repair pathways.
關鍵字(中) ★ 硒代胱氨酸
★ 順鉑
★ DNA 損傷
★ DNA 修復活性
關鍵字(英) ★ Selenocystine
★ Cisplatin
★ DNA damage
★ DNA repair activity
論文目次 中文摘要 VI
ABSTRACT VII
ACKNOWLEDGEMENT VIII
TABLE OF CONTENTS IX
LIST OF FIGURES XII
LIST OF TABLES XIII
ABBREVATION XIV
CHAPTER I 1
INTRODUCTION 1
1.1 Hepatocellular Carcinoma (HCC) 1
1.2 Mode of action of Cisplatin 2
1.3 Negative effects of Cisplatin treatment 2
1.4 Anti-tumor activity of SeC by inducing apoptosis 3
1.5 DNA damage response (DDR) of SeC in cancer cells 4
1.6 Relationship between DNA repair activity and cancer 5
1.7 Combination strategy to raise the efficacy of drug based chemotherapy 6
1.8 Specific Aim 6
CHAPTER II 8
MATERIAL AND METHODS 8
2.1 Chemicals 8
2.2 Cells and Cell Culture 8
2.3 Single and combination drug treatment 8
2.4 Cell viability assay 9
2.5 Comet Assay 9
2.6 Homologous Recombination Assay 10
2.7 Western Blot 10
2.8 Statistical Analysis 11
CHAPTER III 12
RESULTS 12
3.1 Anti-proliferative effect of Selenocystine, Cisplatin and their combination in hepatocellular carcinoma cells and normal liver cells 12
3.2 Pre-treatment of Selenocystine enhanced genotoxicity of Cisplatin in hepatocellular carcinoma cells 13
3.3 Pretreatment of Selenocystine enhanced inhibition of Homologous Recombination (HR) repair activity of Cisplatin on HepG2 cells 14
3.4 The effect of Non Homologous End Joining (NHEJ) repair activity on HepG2 cells after drug combination exposure 14
CHAPTER IV 16
DISCUSSION 16
4.1 Pre-treatment of Selenocystine increase Cisplatin sensitivity to liver cancer cells and preserved the normal liver cells. 16
4.2 Pretreatment of Selenocystine augmented Cisplatin-induced genotoxicity in Hepatocellular Carcinoma 17
4.3 Pretreatment Selenocystine sensitize inhibition of DNA DSBs repair pathways of Cisplatin in HepG2 cells 19
REFERENCES 22
FIGURES 29
TABLES 40
參考文獻 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49.
2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primer. 2021 Dec;7(1):6.
3. Plaz Torres MC, Bodini G, Furnari M, Marabotto E, Zentilin P, Strazzabosco M, et al. Surveillance for Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease: Universal or Selective? Cancers. 2020 May 31;12(6):1422.
4. Balogh J, Victor D, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016 Oct;Volume 3:41–53.
5. Tsim NC. Surgical treatment for liver cancer. World J Gastroenterol. 2010;16(8):927.
6. Eggert T, Greten TF. Current Standard and Future Perspectives in Non-Surgical Therapy for Hepatocellular Carcinoma. Digestion. 2017;96(1):1–4.
7. Revel-Mouroz P, Otal P, Jaffro M, Petermann A, Meyrignac O, Rabinel P, et al. Other non-surgical treatments for liver cancer. Rep Pract Oncol Radiother. 2017 Mar;22(2):181–92.
8. Qiu GH, Xie X, Xu F, Shi X, Wang Y, Deng L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 2015 Jan;67(1):1–12.
9. Štampar M, Breznik B, Filipič M, Žegura B. Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells. 2020 Nov 28;9(12):2557.
10. Hu X, Yang T, Li C, Zhang L, Li M, Huang W, et al. Human Fetal Hepatocyte Line, L-02, Exhibits Good Liver Function In Vitro and in an Acute Liver Failure Model. Transplant Proc. 2013 Mar;45(2):695–700.
11. Zhang B, Dai Y, Zhu L, He X, Huang K, Xu W. Single-cell sequencing reveals novel mechanisms of Aflatoxin B1-induced hepatotoxicity in S phase-arrested L02 cells. Cell Biol Toxicol. 2020 Dec;36(6):603–8.
12. Tang TL, Yang Y, Guo L, Xia S, Zhang B, Yan M. Sunitinib induced hepatotoxicity in L02 cells via ROS-MAPKs signaling pathway. Front Pharmacol. 2022 Oct 26;13:1002142.
13. Liu J, He Y, Zhang D, Cai Y, Zhang C, Zhang P, et al. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol Med Rep. 2017 Mar;16(3):2595–603.
14. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007 Aug;7(8):573–84.
15. Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat Rev. 2019 Jan;72:28–36.
16. Osaki A, Suda T, Kamimura K, Tsuchiya A, Tamura Y, Takamura M, et al. A safe and effective dose of cisplatin in hepatic arterial infusion chemotherapy for hepatocellular carcinoma. Cancer Med. 2013 Feb;2(1):86–98.
17. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005 Apr;4(4):307–20.
18. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003 Oct 20;22(47):7265–79.
19. Nonnekens J, Hoeijmakers JH. After surviving cancer, what about late life effects of the cure? EMBO Mol Med. 2017 Jan;9(1):4–6.
20. Astolfi L, Ghiselli S, Guaran V, Chicca M, Simoni E, Olivetto E, et al. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol Rep. 2013 Apr;29(4):1285–92.
21. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014 May;5(5):e1257–e1257.
22. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics. 2018;73:e478s.
23. Kiss RC, Xia F, Acklin S. Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci. 2021 Jul 30;22(15):8199.
24. Duan M, Ulibarri J, Liu KJ, Mao P. Role of Nucleotide Excision Repair in Cisplatin Resistance. Int J Mol Sci. 2020 Dec 4;21(23):9248.
25. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist [Internet]. 2019 [cited 2022 Nov 2]; Available from: https://cdrjournal.com/article/view/3039
26. Uzma N, Kumar BS, Priyadarsini KI. Hepatoprotective, Immunomodulatory, and Anti-inflammatory Activities of Selenocystine in Experimental Liver Injury of Rats. Biol Trace Elem Res. 2011 Sep;142(3):723–34.
27. Hasegawa T, Mihara M, Nakamuro K, Sayato Y. Mechanisms of selenium methylation and toxicity in mice treated with selenocystine. Arch Toxicol. 1996 Nov 25;71(1–2):31–8.
28. Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med. 2018 Nov;127:80–97.
29. Chen T, Wong YS. Selenocystine induces reactive oxygen species–mediated apoptosis in human cancer cells. Biomed Pharmacother. 2009 Feb;63(2):105–13.
30. Chen T, Wong YS. Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol. 2009 Mar;41(3):666–76.
31. Long M, Wu J, Hao J, Liu W, Tang Y, Li X, et al. Selenocystine-induced cell apoptosis and S-phase arrest inhibit human triple-negative breast cancer cell proliferation. Vitro Cell Dev Biol - Anim. 2015 Nov;51(10):1077–84.
32. Wallenberg M, Misra S, Wasik AM, Marzano C, Björnstedt M, Gandin V, et al. Selenium induces a multi‐targeted cell death process in addition to ROS formation. J Cell Mol Med. 2014 Apr;18(4):671–84.
33. Fan C, Chen J, Wang Y, Wong YS, Zhang Y, Zheng W, et al. Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med. 2013 Dec;65:305–16.
34. Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T. Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget. 2014 May 15;5(9):2853–63.
35. Liu C, Liu Z, Li M, Li X, Wong YS, Ngai SM, et al. Enhancement of Auranofin-Induced Apoptosis in MCF-7 Human Breast Cells by Selenocystine, a Synergistic Inhibitor of Thioredoxin Reductase. Rameshwar P, editor. PLoS ONE. 2013 Jan 14;8(1):e53945.
36. Liu Y, Yang H, Liu Q, Pan M, Wang D, Pan S, et al. Selenocystine-Derived Label-Free Fluorescent Schiff Base Nanocomplex for siRNA Delivery Synergistically Kills Cancer Cells. Molecules. 2022 Feb 15;27(4):1302.
37. Ogiwara H, Ui A, Shiotani B, Zou L, Yasui A, Kohno T. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis. 2013 Nov;34(11):2486–97.
38. Leon‑Galicia I, Diaz‑Chavez J, Albino‑Sanchez M, Garcia‑Villa E, Bermudez‑Cruz R, Garcia‑Mena J, et al. Resveratrol decreases Rad51 expression and sensitizes cisplatin‑resistant MCF‑7 breast cancer cells. Oncol Rep [Internet]. 2018 Mar 27 [cited 2022 Jun 3]; Available from: http://www.spandidos-publications.com/10.3892/or.2018.6336
39. Gong C, Yang Z, Zhang L, Wang Y, Gong W, Liu Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther. 2017 Dec;Volume 11:17–27.
40. Wahyuni EA, Yii CY, Liang HL, Luo YH, Yang SH, Wu PY, et al. Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chem Biol Interact. 2022 Sep;365:110046.
41. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis: DNA Damage and Repair. Environ Mol Mutagen. 2017 Jun;58(5):235–63.
42. Brandsma I, Gent DC. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 2012;3(1):9.
43. Swift L, Golsteyn R. Genotoxic Anti-Cancer Agents and Their Relationship to DNA Damage, Mitosis, and Checkpoint Adaptation in Proliferating Cancer Cells. Int J Mol Sci. 2014 Feb 25;15(3):3403–31.
44. Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, et al. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015 Apr;16(4):436–46.
45. Mylavarapu S, Das A, Roy M. Role of BRCA Mutations in the Modulation of Response to Platinum Therapy. Front Oncol. 2018 Feb 5;8:16.
46. Tassone P, Di Martino MT, Ventura M, Pietragalla A, Cucinotto I, Calimeri T, et al. Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther. 2009 Apr;8(7):648–53.
47. Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells. Biochem Pharmacol. 2000 Nov;60(9):1305–13.
48. Teng PC, Huang SP, Liu CH, Lin TY, Cho YC, Lai YL, et al. Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci. 2021 Oct 29;22(21):11771.
49. Xu H, Xiong C, Chen Y, Zhang C, Bai D. Identification of Rad51 as a prognostic biomarker correlated with immune infiltration in hepatocellular carcinoma. Bioengineered. 2021 Jan 1;12(1):2664–75.
50. Saputra EC, Huang L, Chen Y, Tucker-Kellogg L. Combination Therapy and the Evolution of Resistance: The Theoretical Merits of Synergism and Antagonism in Cancer. Cancer Res. 2018 May 1;78(9):2419–31.
51. Chou TC. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol Rev. 2006 Sep;58(3):621–81.
52. Roell KR, Reif DM, Motsinger-Reif AA. An Introduction to Terminology and Methodology of Chemical Synergy—Perspectives from Across Disciplines. Front Pharmacol. 2017 Apr 20;8:158.
53. Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T. Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget. 2014 May 15;5(9):2853–63.
54. Fan C, Chen J, Wang Y, Wong YS, Zhang Y, Zheng W, et al. Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med. 2013 Dec;65:305–16.
55. Liu C, Liu Z, Li M, Li X, Wong YS, Ngai SM, et al. Enhancement of Auranofin-Induced Apoptosis in MCF-7 Human Breast Cells by Selenocystine, a Synergistic Inhibitor of Thioredoxin Reductase. Rameshwar P, editor. PLoS ONE. 2013 Jan 14;8(1):e53945.
56. Wahyuni EA, Lin HD, Lu CW, Kao CM, Chen SC. The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. Sci Total Environ. 2021 Mar;758:143597.
57. Lin HD, Wang FZ, Lee CY, Nien CY, Tseng YK, Yao CL, et al. 4-Aminobiphenyl inhibits the DNA homologous recombination repair in human liver cells: The role of miR-630 in downregulating RAD18 and MCM8. Toxicology. 2020 Jul;440:152441.
58. Lu Y, Liu Y, Yang C. Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp. 2017 Oct 11;(128):56450.
59. Crumpton MJ, Collins AR. Are environmental electromagnetic fields genotoxic? DNA Repair. 2004 Oct;3(10):1385–7.
60. Ji J, Zhang Y, Redon CE, Reinhold WC, Chen AP, Fogli LK, et al. Phosphorylated fraction of H2AX as a measurement for DNA damage in cancer cells and potential applications of a novel assay. Huen MSY, editor. PLOS ONE. 2017 Feb 3;12(2):e0171582.
61. Lieber MR. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem. 2010 Jun 7;79(1):181–211.
62. Chen Q, Cai D, Li M, Wu X. The homologous recombination protein RAD51 is a promising therapeutic target for cervical carcinoma. Oncol Rep. 2017 Feb;38(2):767–74.
63. Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet. 2021 Jun;37(6):582–99.
64. Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin: DOUBLE-STRAND DNA BREAK FORMATION IN CHROMATIN. J Cell Physiol. 2016 Jan;231(1):3–14.
65. Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers. 2020 Jul 28;12(8):2098.
66. Collins AR. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol Biotechnol. 2004;26(3):249–61.
67. Ji J, Zhang Y, Redon CE, Reinhold WC, Chen AP, Fogli LK, et al. Phosphorylated fraction of H2AX as a measurement for DNA damage in cancer cells and potential applications of a novel assay. Huen MSY, editor. PLOS ONE. 2017 Feb 3;12(2):e0171582.
68. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006 Jun;1(1):23–9.
69. Sears CR, Cooney SA, Chin-Sinex H, Mendonca MS, Turchi JJ. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair. 2016 Apr;40:35–46.
70. Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, et al. Functional relevance of the histone γH2Ax in the response to DNA damaging agents. Proc Natl Acad Sci. 2011 May 24;108(21):8663–7.
71. Bouquet F, Muller C, Salles B. The Loss of γH2AX Signal is a Marker of DNA Double Strand Breaks Repair Only at Low Levels of DNA Damage. Cell Cycle. 2006 May 15;5(10):1116–22.
72. Chernikova SB, Game JC, Brown JM. Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther. 2012 Jan 15;13(2):61–8.
73. McCabe N, Turner NC, Lord CJ, Kluzek K, Białkowska A, Swift S, et al. Deficiency in the Repair of DNA Damage by Homologous Recombination and Sensitivity to Poly(ADP-Ribose) Polymerase Inhibition. Cancer Res. 2006 Aug 15;66(16):8109–15.
74. Xie X, He G, Siddik ZH. Cisplatin in Combination with MDM2 Inhibition Downregulates Rad51 Recombinase in a Bimodal Manner to Inhibit Homologous Recombination and Augment Tumor Cell Kill. Mol Pharmacol. 2020 Apr;97(4):237–49.
75. Rajput M, Mishra D, Kumar K, Singh RP. Silibinin Radiosensitizes EGF Receptor-knockdown Prostate Cancer Cells by Attenuating DNA Repair Pathways. J Cancer Prev. 2022 Sep 30;27(3):170–81.
76. Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 2018 Jul;293(27):10512–23.
77. Liu H, Wang X, Huang A, Gao H, Sun Y, Jiang T, et al. Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents. Oncol Res Featur Preclin Clin Cancer Ther. 2018 Dec 27;27(1):29–38.
78. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020 Dec;21(12):765–81.
79. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature. 1997 Jul;388(6641):492–5.
80. Jayaram S, Ketner G, Adachi N, Hanakahi LA. Loss of DNA ligase IV prevents recognition of DNA by double-strand break repair proteins XRCC4 and XLF. Nucleic Acids Res. 2008 Oct 1;36(18):5773–86.
81. Lu J, Wang XZ, Zhang TQ, Huang XY, Yao JG, Wang C, et al. Prognostic significance of XRCC4 expression in hepatocellular carcinoma. Oncotarget. 2017 Oct 20;8(50):87955–70.
82. Sun D, Urrabaz R, Buzello C, Nguyen M. Effects of cisplatin on expression of DNA ligases in MiaPaCa human pancreatic cancer cellsq. Biochem Biophys Res Commun. 2002.
指導教授 陳師慶(Professor Ssu-Ching Chen) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明