博碩士論文 109626001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:13.58.32.115
姓名 何文樸(Wen-Pu Ho)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 利用數值模式探討近岸海表面溫度對登陸颱風強度之影響
(Numerical Simulations of Intensity Response of Landfalling Typhoons to Coastal SST)
相關論文
★ 1980-2018年期間西北太平洋颱風大小變化之研究★ 利用衛星估計西北太平洋及南海颱風季節之垂直溫度結構
★ 二月份最強颱風:Wutip (2019) 之 大氣與海洋條件★ 颱風 Bavi (2020) 在東中國海淺海異常增強
★ 1999~2018年期間南海沿岸淺水區對颱風登陸時強度變化之影響★ 利用耦合模式探討颱風Bavi (2020)在東海的增強過程
★ 應用鍶-釹-鉛同位素探討大氣與水體環境中金屬來源與傳輸過程之研究★ 探究環境變化對原核生物群落生態系統功能的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在颱風季時,南海近岸淺水區從海表面至海底整層海水溫度通常較溫暖,由於缺乏冷水使得颱風垂直混合作用無法有效降低海溫,導致颱風登陸前強度得以維持甚至突然增強,並對沿岸地區造成嚴重災害。本研究利用WRF模式模擬2003年至2018年期間通過南海近岸淺水區之30個颱風,藉由變更淺水區海表面溫度(Sea Surface Temperature, SST)的實驗方式量化SST冷卻和淺水區對颱風登陸強度之重要性。同時也探討了SST冷卻與淺水區是否會對大氣環境產生影響,以及如何改變颱風內部結構與發展。
本文共分成兩個部分,第一部分為驗證控制組實驗所模擬的30個颱風是否合理。結果顯示颱風路徑的模擬相當接近觀測,並且透過WRF模擬的颱風能一定程度上改善再分析資料的颱風強度,因此整體而言模擬結果有掌握住颱風發展趨勢。另外也發現,模式內綜觀環境場的誤差在模擬剛開始就已存在,並非是模擬過程中突然出現的不合理現象。最後,透過計算垂直風切與颱風強度的關係並和前人研究進行比較,發現模式中強度較強的颱風有能抵抗較強風切的特徵,而前人的研究也支持相同論點,因此這間接證明了模式對於綜觀環境的模擬有一定的可靠性。
第二部分則是量化SST冷卻和淺水區對颱風登陸強度之重要性,並觀察大氣環境與颱風內部發展在這兩種作用下的變化。結果顯示,近岸SST沒有冷卻會導致颱風登陸平均強度增強6.7 ± 5.6 kt;而在淺水區重要性方面,由於淺水區缺乏冷水的混合使SST較高,導致颱風登陸時平均強度增強7.5 ± 6.3 kt。當淺水區的SST因為冷卻或限制混合作用改變時,也會影響到表面氣象場並且影響範圍集中在邊界層(~500 m)附近。將空間拉近至颱風尺度範圍能發現,颱風下方氣象場變化反映的是其結構與發展過程的改變。平均來說,相較沒有淺水區的情況,當淺水區存在時SST將上升1.87 ℃,熱通量增加137.9 W m-2,眼牆附近的垂直次環流將增強0.044 m s-1,颱風中心加熱會上升0.28 K。這些過程最終導致颱風登陸強度,如前面提到的,增強7.5 ± 6.3 kt。
摘要(英) The shallow coastal regions in the South China Sea often have warmer water from the surface to the bottom during the summer season. This lack of cold water restricted the vertical mixing effect caused by typhoons, leading to the maintenance or sudden strengthening of typhoon intensity before landfall, resulting in severe disasters along coastal areas. This study useed the WRF model to simulate 30 typhoons that passed through the shallow coastal regions of the South China Sea from 2003 to 2018. By experimentally modifying the Sea Surface Temperature (SST) in the shallow water regions, the significance of SST cooling and shallow water regions on typhoon landfall intensity was quantified. The study also investigated whether these phenomena would impact the atmospheric environment and alter the internal structure and development of typhoons.
The study is divided into two parts. The first part focuses on validating the simulations of 30 typhoons using control experiments. The results demonstrate that the simulated typhoon tracks closely match observations, and the WRF model improves the issue of low-intensity typhoons commonly found in global reanalysis data. Overall, the model exhibits a certain level of accuracy in capturing typhoon development. Additionally, despite there are some errors between the simulated and observed atmospheric environments in the early stages of the simulations, these errors were already present in the early stages of the simulations and not sudden anomalies. Furthermore, by examining the relationship between vertical wind shear and typhoon intensity and comparing it with previous studies, it was found that the model exhibits characteristics of stronger typhoons being able to resist stronger wind shear, which is consistent with previous research. This indirectly validates the reliability of the model in simulating the atmospheric environment.
The second part quantifies the importance of shallow water effect and SST cooling on typhoon landfall intensity and examining the changes in the atmospheric environment and internal development under these two phenomena. The results indicate that if there is no coastal SST cooling the average typhoon landfall intensity would intense by 6.7 ± 5.6 kt. Furthermore, the presence of shallow water regions limits the mixing of cold water, resulting in higher SST and an average landfall intensity increase of 7.5 ± 6.3 kt. When SST in the shallow water region is altered due to cooling or the influence of shallow water effect, it also affects the surface meteorological fields, primarily concentrated near the planet boundary layer height (~500m). At the typhoon scale, changes in meteorological fields beneath the typhoon reflect alterations in its structure and development process. On average, the presence of shallow water effect prevents SST from decreasing by 1.87°C, increases heat flux by 137.9 W m-2, strengthens the vertical secondary circulation near the eyewall by 0.044 m s-1, and raises the heating near the typhoon center by 0.28 K. These processes ultimately lead to a typhoon landfall intensity increase of 7.5 ± 6.3 kt, as mentioned earlier.
關鍵字(中) ★ 颱風
★ 淺水區
★ 海表面溫度
★ 颱風發展過程
關鍵字(英) ★ Typhoon
★ shallow water region
★ sea surface temperature
★ Typhoon development
論文目次 中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xii
第一章、 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 颱風引起的海表面溫度冷卻 2
1.2.2 近岸颱風海洋交互作用 4
1.2.3 颱風發展與增強 6
1.2.4 大氣綜觀環境對颱風的影響 7
1.3 研究動機與科學目的 9
第二章、 資料與研究方法 10
2.1 資料來源 10
2.1.1 再分析資料 10
2.1.2 全球海底地形 10
2.1.3 颱風引起的海表面溫度冷卻 11
2.1.4 颱風個案與最佳路徑 12
2.2 模式介紹與設定 13
2.2.1 模式簡介 13
2.2.2 模式設定 14
2.3 實驗設計 15
2.3.1 控制組實驗 15
2.3.2 敏感性實驗 15
2.3.3 淺水區對颱風影響的定義 15
2.4 颱風尺度特徵與綜觀環境場 16
2.4.1 颱風位置與強度 16
2.4.2 增強率與移動速率 16
2.4.3 垂直風切 16
2.5 資料評鑑方法 17
第三章、 控制組實驗結果 18
3.1 颱風尺度變數校驗 18
3.1.1 路徑與強度 18
3.1.2 增強率與移動速率 20
3.2 綜觀環境變數校驗 22
3.2.1 氣象場誤差總覽 22
3.2.2 氣象場誤差之演變 24
3.2.3 垂直風切校驗 25
第四章、 淺水區冷卻對颱風強度與結構之影響 27
4.1 颱風尺度變數統計結果 27
4.1.1 強度及路徑 27
4.1.2 增強率及移動速度 29
4.2 淺水區冷卻對大氣環境的影響 31
4.2.1 研究區域之氣象場 31
4.2.2 環境垂直風切 33
4.3 淺水區冷卻如何影響颱風內部過程 35
4.3.1 表面氣象場與颱風強度 35
4.3.2 表面氣象場與三維過程 37
4.3.3 淺水區冷卻對颱風內部過程的影響 40
第五章、 結論與未來工作 44
5.1 結論 44
5.2 未來工作 48
參考文獻 49
附表 58
附圖 61
參考文獻 吳俊傑, & 盧妙玲. (1997). 颱風最大潛在強度理論之探討及檢驗. 大氣科學, 25(1), 79-97.
李清勝, & 簡國基. (1997). 颱風環流維持機制之數值模擬. 大氣科學, 25(2), 147-172.
陳冠呈. (2022). 1999~2018年期間南海沿岸淺水區對颱風登陸時強度變化之影響. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/hxmx5h
Bender, M. A., & Ginis, I. (2000). Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly weather review, 128(4), 917-946. doi:https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2
Betts, A. K. (1982). Saturation point analysis of moist convective overturning. Journal of the Atmospheric Sciences, 39(7), 1484-1505.
Bhatia, K. T., & Nolan, D. S. (2013). Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961-980.
Biswas, M. K., Bernardet, L., & Dudhia, J. (2014). Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model. Geophysical Research Letters, 41(24), 9113-9119.
Brand, S., Buenafe, C. A., & Hamilton, H. D. (1981). Comparison of Tropical Cyclone Motion and Environmental Steering. Monthly weather review, 109(4), 908-909. doi:https://doi.org/10.1175/1520-0493(1981)109<0908:COTCMA>2.0.CO;2
Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20(19), 4819-4834. doi:https://doi.org/10.1175/JCLI4282.1
Cangialosi, J. P., & Franklin, J. L. (2012). 2010 National hurricane center forecast verification report. National Hurricane Center.
Carrasco, C. A., Landsea, C. W., & Lin, Y.-L. (2014). The Influence of Tropical Cyclone Size on Its Intensification. Weather and Forecasting, 29(3), 582-590. doi:https://doi.org/10.1175/WAF-D-13-00092.1
Cha, D. H., Jin, C. S., Lee, D. K., & Kuo, Y. H. (2011). Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. Journal of Geophysical Research: Atmospheres, 116(D10).
Chan, J. C. (2005). The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99-128.
Chang, C.-C., & Wu, C.-C. (2017). On the Processes Leading to the Rapid Intensification of Typhoon Megi (2010). Journal of the Atmospheric Sciences, 74(4), 1169-1200. doi:https://doi.org/10.1175/JAS-D-16-0075.1
Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. Journal of Atmospheric Sciences, 21(1), 68-75.
Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly weather review, 129(4), 569-585. doi:https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, H., & Zhang, D.-L. (2013). On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. Journal of the Atmospheric Sciences, 70(1), 146-162.
Chiang, T.-L., Wu, C.-R., & Oey, L.-Y. (2011). Typhoon Kai-Tak: An Ocean’s Perfect Storm. Journal of Physical Oceanography, 41(1), 221-233. doi:https://doi.org/10.1175/2010JPO4518.1
Chu, J.-H., Sampson, C. R., Levine, A. S., & Fukada, E. (2002). The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. In.
Cione, J. J., Black, P. G., & Houston, S. H. (2000). Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550-1561.
Cione, J. J., Kalina, E. A., Zhang, J. A., & Uhlhorn, E. W. (2013). Observations of Air–Sea Interaction and Intensity Change in Hurricanes. Monthly weather review, 141(7), 2368-2382. doi:https://doi.org/10.1175/MWR-D-12-00070.1
Corbosiero, K. L., & Molinari, J. (2002). The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones, Monthly Weather Review, 130(8), 2110-2123. doi: https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2
DeMaria, M. (1996). The Effect of Vertical Shear on Tropical Cyclone Intensity Change. Journal of Atmospheric Sciences, 53(14), 2076-2088. doi:https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
Demaria, M., & Kaplan, J. (1994). Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. Journal of Climate, 7(9), 1324-1334. doi:https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
DeMaria, M., & Kaplan, J. (1999). An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Weather and Forecasting, 14(3), 326-337. doi:https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
DeMaria, M., Sampson, C. R., Knaff, J. A., & Musgrave, K. D. (2014). Is tropical cyclone intensity guidance improving? Bulletin of the American Meteorological Society, 95(3), 387-398.
Divins, D., & Metzger, D. (2003). Coastal relief model. National Geophysical Data Center, Boulder, CO http://www. ngdc. noaa. gov/mgg/coastal/coastal. html.
Durden, S. L. (2013). Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Monthly weather review, 141(12), 4256-4268.
Elsberry, R. L., Weniger, E. L., & Meanor, D. H. (1988). A Statistical Tropical Cyclone Intensity Forecast Technique Incorporating Environmental Wind and Vertical Wind Shear Information. Monthly weather review, 116(11), 2142-2154. doi:https://doi.org/10.1175/1520-0493(1988)116<2142:ASTCIF>2.0.CO;2
Emanuel, K. (2004). Tropical cyclone energetics and structure. Atmospheric turbulence and mesoscale meteorology, 165, 192.
Emanuel, K. (2005). Divine wind: the history and science of hurricanes: Oxford university press.
Emanuel, K. (2017). Will Global Warming Make Hurricane Forecasting More Difficult? Bulletin of the American Meteorological Society, 98(3), 495-501. doi:https://doi.org/10.1175/BAMS-D-16-0134.1
Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental Control of Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 61(7), 843-858. doi:https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), 585-605.
Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci, 45(7), 1143-1155.
Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48(21), 2313-2329.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665-669.
Emanuel, K. A., & Nolan, D. S. (2004). Tropical cyclone activity and the global climate system. Paper presented at the Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc. A.
Frank, W. M., & Ritchie, E. A. (2001). Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Monthly weather review, 129(9), 2249-2269. doi:https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
Glenn, S., Aragon, D., Bowers, L., Crowley, M., Dunk, R., Evans, C., . . . Kerfoot, J. (2013). Process-driven improvements to hurricane intensity and storm surge forecasts in the mid-atlantic bight: Lessons learned from hurricanes irene and sandy. Paper presented at the 2013 MTS/IEEE OCEANS-Bergen.
Glenn, S., Miles, T., Seroka, G., Xu, Y., Forney, R., Yu, F., . . . Kohut, J. (2016). Stratified coastal ocean interactions with tropical cyclones. Nature communications, 7(1), 10887.
Gramer, L. J., Zhang, J. A., Alaka, G., Hazelton, A., & Gopalakrishnan, S. (2022). Coastal downwelling intensifies landfalling hurricanes. Geophysical Research Letters, 49(13), e2021GL096630.
Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly weather review, 96(10), 669-700.
Gray, W. M. (1998). The formation of tropical cyclones. Meteorology and Atmospheric Physics, 67, 37-69.
Green, B. W., & Zhang, F. (2013). Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Monthly weather review, 141(7), 2308-2324. doi:https://doi.org/10.1175/MWR-D-12-00274.1
Halliwell, G. R., Srinivasan, A., Kourafalou, V., Yang, H., Willey, D., Le Hénaff, M., & Atlas, R. (2014). Rigorous Evaluation of a Fraternal Twin Ocean OSSE System for the Open Gulf of Mexico. Journal of Atmospheric and Oceanic Technology, 31(1), 105-130. doi:https://doi.org/10.1175/JTECH-D-13-00011.1
Hastings, D. A., & Dunbar, P. (1998). Development & assessment of the global land one-km base elevation digital elevation model (GLOBE). Group, 4(6), 218-221.
Hawkins, H. F., & Imbembo, S. M. (1976). The structure of a small, intense hurricane—Inez 1966. Monthly weather review, 104(4), 418-442.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., . . . Schepers, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54(21), 2519-2541.
Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151.
Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly weather review, 134(9), 2318-2341. doi:https://doi.org/10.1175/MWR3199.1
Houghton, R. W., Schlitz, R., Beardsley, R. C., Butman, B., & Chamberlin, J. L. (1982). The Middle Atlantic Bight Cold Pool: Evolution of the Temperature Structure During Summer 1979. Journal of Physical Oceanography, 12(10), 1019-1029. doi:https://doi.org/10.1175/1520-0485(1982)012<1019:TMABCP>2.0.CO;2
Hu, C., & Muller‐Karger, F. E. (2007). Response of sea surface properties to Hurricane Dennis in the eastern Gulf of Mexico. Geophysical Research Letters, 34(7).
Huang, H. C., Boucharel, J., Lin, I. I., Jin, F. F., Lien, C. C., & Pun, I. F. (2017). Air‐sea fluxes for H urricane P atricia (2015): Comparison with supertyphoon H aiyan (2013) and under different ENSO conditions. Journal of Geophysical Research: Oceans, 122(8), 6076-6089.
Huang, P., Lin, I.-I., Chou, C., & Huang, R.-H. (2015). Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature communications, 6(1), 7188.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).
Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R., & Coakley, B. (2000). New grid of Arctic bathymetry aids scientists and mapmakers. EOS, Transactions American Geophysical Union, 81(9), 89-96.
Jarvinen, B. R., & Neumann, C. J. (1979). Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. In.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., & García-Bustamante, E. (2012). A Revised Scheme for the WRF Surface Layer Formulation. Monthly weather review, 140(3), 898-918. doi:https://doi.org/10.1175/MWR-D-11-00056.1
Kieu, C., Tallapragada, V., & Hogsett, W. (2014). Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model. Geophysical Research Letters, 41(9), 3298-3306.
Kurihara, Y., Tuleya, R. E., & Bender, M. A. (1998). The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Monthly weather review, 126(5), 1306-1322.
Lee, C.-Y., & Chen, S. S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576-3594.
Lee, C.-Y., & Chen, S. S. (2014). Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Monthly weather review, 142(5), 1927-1944. doi:https://doi.org/10.1175/MWR-D-13-00122.1
Leslie, L., Hess, G., Holland, G., Morison, R., & Fraedrich, K. (1992). Predicting changes in intensity of tropical cyclones using a Markov chain. Australian Meteorological Magazine, 40(1).
Li, X. (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Science China Earth Sciences, 56, 270-281.
Lin, I.-I., Pun, I.-F., & Wu, C.-C. (2009). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Monthly weather review, 137(11), 3744-3757. doi:https://doi.org/10.1175/2009MWR2713.1
Lin, I.-I., Wu, C.-C., Pun, I.-F., & Ko, D.-S. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly weather review, 136(9), 3288-3306. doi:https://doi.org/10.1175/2008MWR2277.1
Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical Research Letters, 30(3).
Lin, I. I., Pun, I. F., & Lien, C. C. (2014). “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23), 8547-8553.
Lin, J., & Qian, T. (2019). Rapid intensification of tropical cyclones observed by AMSU satellites. Geophysical Research Letters, 46(12), 7054-7062.
Liu, K. S., & Chan, J. C. (2020). Recent increase in extreme intensity of tropical cyclones making landfall in South China. Climate Dynamics, 55(5-6), 1059-1074.
Liu, X., Wei, J., Zhang, D. L., & Miller, W. (2019). Parameterizing sea surface temperature cooling induced by tropical cyclones: 1. Theory and an application to Typhoon Matsa (2005). Journal of Geophysical Research: Oceans, 124(2), 1215-1231.
Mei, W., Pasquero, C., & Primeau, F. (2012). The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophysical Research Letters, 39(7).
Merrill, R. T. (1988). Environmental influences on hurricane intensification. In (Vol. 45, pp. 1678-1687).
Montgomery, M. T., Sang, N. V., Smith, R. K., & Persing, J. (2009). Do tropical cyclones intensify by WISHE? Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 135(644), 1697-1714.
Moon, J., Park, J., Cha, D.-H., & Moon, Y. (2021). Five-Day Track Forecast Skills of WRF Model for the Western North Pacific Tropical Cyclones. Weather and Forecasting, 36(4), 1491-1503. doi:https://doi.org/10.1175/WAF-D-20-0092.1
Murakami, H., & Wang, B. (2010). Future Change of North Atlantic Tropical Cyclone Tracks: Projection by a 20-km-Mesh Global Atmospheric Model. Journal of Climate, 23(10), 2699-2721. doi:https://doi.org/10.1175/2010JCLI3338.1
Nguyen, L. T., & Molinari, J. (2015). Simulation of the Downshear Reformation of a Tropical Cyclone, Journal of the Atmospheric Sciences, 72(12), 4529-4551. doi: https://doi.org/10.1175/JAS-D-15-0036.1
Oey, L.-Y., Ezer, T., Wang, D.-P., Yin, X.-Q., & Fan, S.-J. (2007). Hurricane-induced motions and interaction with ocean currents. Continental Shelf Research, 27(9), 1249-1263.
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3-40.
Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3(1), 26-38.
Park, J. H., Yeo, D. E., Lee, K., Lee, H., Lee, S. W., Noh, S., . . . Nam, S. (2019). Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophysical Research Letters, 46(24), 14595-14603.
Park, M.-S., Elsberry, R. L., & Harr, P. A. (2012). Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Tropical Cyclone Research and Review, 1(4), 448-457.
Pasch, R. J., Berg, R., Roberts, D. P., & Papin, P. P. (2021). National Hurricane Center Tropical Cyclone Report. Hurricane Laura, 1-14.
Paterson, L. A., Hanstrum, B. N., Davidson, N. E., & Weber, H. C. (2005). Influence of Environmental Vertical Wind Shear on the Intensity of Hurricane-Strength Tropical Cyclones in the Australian Region. Monthly weather review, 133(12), 3644-3660. doi:https://doi.org/10.1175/MWR3041.1
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., . . . Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature climate change, 2(4), 289-294.
Potter, H., DiMarco, S. F., & Knap, A. H. (2019). Tropical cyclone heat potential and the rapid intensification of Hurricane Harvey in the Texas Bight. Journal of Geophysical Research: Oceans, 124(4), 2440-2451.
Price, J. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Science, 5(3), 351-368.
Price, J. F. (1981). Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, 11(2), 153-175. doi:https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
Pun, I.-F., Chan, J. C. L., Lin, I.-I., Chan, K. T. F., Price, J. F., Ko, D. S., . . . Huang, H.-C. (2019). Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11(13), 3709. Retrieved from https://www.mdpi.com/2071-1050/11/13/3709
Rogers, R., Reasor, P. D., & Lorsolo, S. (2013). Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970-2991.
Schubert, W. H., & Hack, J. J. (1982). Inertial stability and tropical cyclone development. Journal of the Atmospheric Sciences, 39(8), 1687-1697.
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., & Glenn, S. (2016). Hurricane Irene Sensitivity to Stratified Coastal Ocean Cooling. Monthly weather review, 144(9), 3507-3530. doi:https://doi.org/10.1175/MWR-D-15-0452.1
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., & Glenn, S. (2017). Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes. Journal of Geophysical Research: Oceans, 122(6), 4845-4867.
Shay, L. (2009). Upper ocean structure: Responses to strong atmospheric forcing events. In Encyclopedia of ocean sciences (pp. 192-210): Elsevier Ltd.
Shen, W., & Ginis, I. (2003). Effects of surface heat flux‐induced sea surface temperature changes on tropical cyclone intensity. Geophysical Research Letters, 30(18).
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., . . . Barker, D. M. (2019). A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145(145), 550.
Slocum, C. J., Razin, M. N., Knaff, J. A., & Stow, J. P. (2022). Does ERA5 Mark a New Era for Resolving the Tropical Cyclone Environment? Journal of Climate, 35(21), 7147-7164. doi:https://doi.org/10.1175/JCLI-D-22-0127.1
Smith, W. H., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956-1962.
Stern, D. P., & Nolan, D. S. (2012). On the height of the warm core in tropical cyclones. Journal of the Atmospheric Sciences, 69(5), 1657-1680.
Stern, D. P., & Zhang, F. (2013). How Does the Eye Warm? Part I: A Potential Temperature Budget Analysis of an Idealized Tropical Cyclone. Journal of the Atmospheric Sciences, 70(1), 73-90. doi:https://doi.org/10.1175/JAS-D-11-0329.1
Stern, D. P., & Zhang, F. (2016). The Warm-Core Structure of Hurricane Earl (2010). Journal of the Atmospheric Sciences, 73(8), 3305-3328. doi:https://doi.org/10.1175/JAS-D-15-0328.1
Sun, J., & Oey, L.-Y. (2015). The Influence of the Ocean on Typhoon Nuri (2008). Monthly weather review, 143(11), 4493-4513. doi:https://doi.org/10.1175/MWR-D-15-0029.1
Tang, J., Zhang, J. A., Kieu, C., & Marks, F. D. (2018). Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations. Tropical Cyclone Research and Review, 7(4), 201-211.
Tu, S., Chan, J. C., Xu, J., Zhong, Q., Zhou, W., & Zhang, Y. (2022). Increase in tropical cyclone rain rate with translation speed. Nature communications, 13(1), 7325.
Wallace, J. M., Mitchell, T. P., & Deser, C. (1989). The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. Journal of Climate, 2(12), 1492-1499. doi:https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
Wang, Y.-q., & Wu, C.-C. (2004). Current understanding of tropical cyclone structure and intensity changes–a review. Meteorology and Atmospheric Physics, 87(4), 257-278.
Wang, Y., Montgomery, M., & Wang, B. (2004). How much vertical shear can a tropical cyclone resist? Paper presented at the Bulletin of the American Meteorological Society.
Wu, C. C., Tu, W. T., Pun, I. F., Lin, I. I., & Peng, M. S. (2016). Tropical cyclone‐ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere‐ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1), 153-167.
Xu, J., & Wang, Y. (2015). A Statistical Analysis on the Dependence of Tropical Cyclone Intensification Rate on the Storm Intensity and Size in the North Atlantic. Weather and Forecasting, 30(3), 692-701. doi:https://doi.org/10.1175/WAF-D-14-00141.1
Xu, J., & Wang, Y. (2018). Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the Western North Pacific. Weather and Forecasting, 33(2), 523-537. doi:https://doi.org/10.1175/WAF-D-17-0095.1
Yablonsky, R. M., & Ginis, I. (2009). Limitation of One-Dimensional Ocean Models for Coupled Hurricane–Ocean Model Forecasts. Monthly weather review, 137(12), 4410-4419. doi:https://doi.org/10.1175/2009MWR2863.1
Zambon, J. B., He, R., & Warner, J. C. (2014). Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dynamics, 64, 1535-1554.
Zeng, Z., Wang, Y., & Wu, C.-C. (2007). Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study. Monthly weather review, 135(1), 38-59. doi:https://doi.org/10.1175/MWR3278.1
Zhang, C., Wang, Y., & Hamilton, K. (2011). Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly weather review, 139(11), 3489-3513. doi:https://doi.org/10.1175/MWR-D-10-05091.1
Zhang, D. L., & Chen, H. (2012). Importance of the upper‐level warm core in the rapid intensification of a tropical cyclone. Geophysical Research Letters, 39(2).
Zhang, F., & Tao, D. (2013). Effects of Vertical Wind Shear on the Predictability of Tropical Cyclones. Journal of the Atmospheric Sciences, 70(3), 975-983. doi:https://doi.org/10.1175/JAS-D-12-0133.1
Zhang, J. A., Nolan, D. S., Rogers, R. F., & Tallapragada, V. (2015). Evaluating the Impact of Improvements in the Boundary Layer Parameterization on Hurricane Intensity and Structure Forecasts in HWRF. Monthly weather review, 143(8), 3136-3155. doi:https://doi.org/10.1175/MWR-D-14-00339.1
Zhang, Z., Wang, Y., Zhang, W., & Xu, J. (2019). Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: A numerical study. Journal of Geophysical Research: Atmospheres, 124(24), 13731-13749.
指導教授 潘任飛(Iam-Fei Pun) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明