博碩士論文 109626007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.15.198.69
姓名 周冠霖(Kuang-Lin Chou)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 模擬農村農地與綠屋頂減洪及水田供水效用
(Simulation of Farmland and Green Roof Flood Detention and Water Supply Effects of Paddy Fields in Rural Areas)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 氣候異常導致台灣近年來發生乾旱及淹水事件越發頻繁,造成了農村中的作物經濟損失,國際上也提出「以自然為本的解方」(Nature-based Solution, NbS)措施來應對災害,許多研究指出不同規模的NbS能夠更有效地解決地區的洪災問題,因此本研究選定桃園市大園區溪海里做為研究地區並以SWMM(Storm Water Management Model)來模擬兩種規模的設施,大型NbS是以水利署提出的加高農地田梗方式「在地滯洪」作為對應洪水之手段,小型NbS則是以綠屋頂作為施作手段。在滯洪模擬方面,以前人研究來檢定及驗證綠屋頂的參數,降雨選擇小時尺度事件,以淹水潛勢圖來檢定及驗證農地滯洪結果,降雨選擇5、10及20年重現期的設計降雨,兩者的驗證結果判定係數R2分別為0.96及0.98,表示為高度相關。選定8種情境進行效用分析,分別為田梗加高10、20及30公分各自包含有無安裝綠屋頂2種情境的組合,最後用滯洪體積比作為指標結合4個燈號來表示淹水的嚴重程度,在結果中發現加入綠屋頂只針對降雨前期有小幅滯洪作用,約為4mm之淹水,而在地滯洪在10年重現期的強度以上時可依照田梗加高10、20及30公分分別滯洪59mm、130mm及200mm的淹水,並且在實施田梗加高30公分時能夠將研究地區的淹水防護標準由5年提升至20年。在供水方面,本研究設計供水機制以判斷供水及儲水時機,假設滯洪後以總灌溉水量的3%做為儲水上限,並供水田灌溉用水,降雨選用2009~2022年日降雨,在結果中發現大量中小型降雨情況農地滯洪機制可收集之水量最多,而短延時強降雨收集到的水量較少,綜合來說,降雨時間點相對於稻米不同生長階段中水田湛水深需求對水田供水效用影響甚鉅。
摘要(英) Due to abnormal climate conditions, Taiwan has experienced increasingly frequent droughts and floods in recent years, resulting in significant economic losses for crops in rural areas. This study focuses on the Xi Hai village in Dayuan District, Taoyuan City, and utilizes the Storm Water Management Model (SWMM) to simulate two types of Nature-based Solutions (NbS) facilities. The large-scale NbS approach involves raising the agricultural land′s ridge elevation as a means to detain floodwater, in accordance with the Water Resources Agency′s recommendation. On the other hand, the small-scale NbS approach utilizes green roofs. The parameters of the green roof were calibrated and validated using hourly rainfall events, and the flood potential maps were used to verify the results with design rainfall events of 5, 10, and 20-year return periods. The simulations showed a strong correlation with the validation results, with R2 values of 0.96 and 0.98 for the green roof and on-site flood detention, respectively. Utility analysis was conducted for eight scenarios, which combined different ridge elevations (10 cm, 20 cm, and 30 cm) with and without green roofs. The flood volume ratio was used as an indicator, along with four color-coded indicators, to evaluate the severity of flooding. The results indicated that green roofs had a minor detention effect during the initial rainfall, reducing flooding by approximately 4 mm. On the other hand, on-site flood detention proved effective, with ridge elevations of 10 cm, 20 cm, and 30 cm detaining floodwater by 59 mm, 130 mm, and 200 mm, respectively, for rainfall events exceeding the 10-year return period. By implementing a 30 cm ridge elevation, the flood protection standard in the study area could be improved from a 5-year to a 20-year return period. Regarding water supply, a mechanism was designed to determine the timing of supply and storage. After flood detention, the storage capacity was limited to 3% of the total irrigation water volume for paddy field irrigation. Daily rainfall data from 2009 to 2022 were analyzed, showing that the agricultural land detention mechanism collected the highest amount of water during moderate to small-scale rainfall events, while less water was collected during short-duration heavy rainfall events. Overall, the timing of rainfall relative to the water depth requirements during different stages of rice growth significantly affected water supply effectiveness in paddy fields.
關鍵字(中) ★ SWMM
★ 綠屋頂
★ 在地滯洪
★ 滯留體積比
★ 水田供水
關鍵字(英) ★ SWMM
★ green roof
★ on-side flood detention
★ retention volume ratio
★ paddy field irrigation water supply
論文目次 第一章、緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究流程與架構 3
第二章、文獻回顧 5
2.1 NbS之定義與類似理念 5
2.2國內外各規模NbS方法整理 7
2.3常見的淹水模式整理 10
2.4農村社區供水方法 11
第三章、研究方法 14
3.1研究地區 14
3.2 SWMM模式建置 16
3.2.1研究地區模式建置 17
3.2.2 SWMM綠屋頂之參數設定 18
3.2.3 SWMM在地滯洪之參數設定 24
3.3 SWMM模式檢定及驗證 27
3.3.1 SWMM綠屋頂參數檢定及驗證 27
3.3.2 SWMM在地滯洪參數檢定及驗證 28
3.4農村模式減洪效用 32
3.5供水計算機制 33
第四章、結果與討論 38
4.1模式檢定及驗證結果 38
4.1.1 綠屋頂檢定及驗證 38
4.1.2 在地滯洪模式檢定及驗證 42
4.2農村社區滯洪效果 45
4.2.1 5年重現期之滯洪效果 45
4.2.2 10年重現期之滯洪效果 50
4.2.3 20年重現期之滯洪效果 53
4.2.4小結 56
4.3農村社區供水效果 59
4.3.1 降雨量對供水之影響 59
4.3.2 需灌溉水量對供水之影響 62
4.3.3 小結 64
第五章、結論與建議 66
5.1結論 66
5.2建議 67
參考文獻 69
附錄A 75
參考文獻 1. Acharya, P., Gupta, A. K., Dhyani, S., & Karki, M. (2020). New pathways for NbS to realise and achieve SDGs and post 2015 targets: Transformative approaches in resilience building. In Nature-based Solutions for Resilient Ecosystems and Societies (pp. 435-455). Springer.
2. Asare, P. (2021). Nature-based solutions (NBS) as an urban flood mitigation measure: the case of Ga East Municipality, Accra, Ghana University of Twente].
3. Baravikova, A. (2020). The uptake of new concepts in urban greening: Insights from Poland. Urban Forestry & Urban Greening, 56, 126798.
4. Brasil, J., Macedo, M., Lago, C., Oliveira, T., Júnior, M., Oliveira, T., & Mendiondo, E. (2021). Nature-based solutions and real-time control: Challenges and opportunities. Water, 13(5), 651.
5. Chou, R.-J. (2016). Achieving successful river restoration in dense urban areas: Lessons from Taiwan. Sustainability, 8(11), 1159.
6. Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-2036.
7. Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S., Porcù, F., Bertini, F., Montesi, D., & Vojinovic, Z. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environmental Research, 179, 108799.
8. Dutta, A., Torres, A. S., & Vojinovic, Z. (2021). Evaluation of pollutant removal efficiency by small-scale nature-based solutions focusing on bio-retention cells, vegetative swale and porous pavement. Water, 13(17), 2361.
9. Ebissa, G., & Desta, H. (2022). Review of urban agriculture as a strategy for building a water resilient city. City and Environment Interactions, 100081.
10. Ferreira, C. S., Mourato, S., Kasanin-Grubin, M., Ferreira, A. J., Destouni, G., & Kalantari, Z. (2020). Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment. Water, 12(10), 2893.
11. Finger, D. C., Donghia, L., & Hrabalikova, M. (2019). Nature-based solution for flood and drought risk reduction in Southern Iceland. Multidisciplinary Digital Publishing Institute Proceedings, 30(1), 44.
12. Gao, Z., Zhang, Q., Xie, Y., Wang, Q., Dzakpasu, M., Xiong, J., & Wang, X. (2022). A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change. Science of The Total Environment, 825, 153954.
13. Huang, C.-L., Hsu, N.-S., Liu, H.-J., & Huang, Y.-H. (2018). Optimization of low impact development layout designs for megacity flood mitigation. Journal of hydrology, 564, 542-558.
14. Huang, Z., Nya, E. L., Rahman, M. A., Mwamila, T. B., Cao, V., Gwenzi, W., & Noubactep, C. (2021). Integrated water resource management: Rethinking the contribution of rainwater harvesting. Sustainability, 13(15), 8338.
15. Hussainzada, W., & Lee, H. S. (2022). Effect of an improved agricultural irrigation scheme with a hydraulic structure for crop cultivation in arid northern Afghanistan using the Soil and Water Assessment Tool (SWAT). Scientific reports, 12(1), 1-13.
16. Kazemi, M., Courard, L., & Hubert, J. (2021). Heat transfer measurement within green roof with incinerated municipal solid waste aggregates. Sustainability, 13(13), 7115.
17. Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment, 610, 997-1009.
18. Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., Basu, B., Basu, A. S., Bowyer, P., & Charizopoulos, N. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Science of The Total Environment, 784, 147058.
19. Kuriqi, A., & Hysa, A. (2021). Multidimensional aspects of floods: nature-based mitigation measures from basin to river reach scale. In. Springer.
20. Lewis A. Rossman, & Huber, W. C. (2016). Storm Water Management Model Reference Manual Volume III, Water Quality.
21. Macháč, J., & Louda, J. (2019). Urban wetlands restoration in floodplains: a case of the city of pilsen, Czech republic. In Nature-Based Flood Risk Management on Private Land (pp. 111-126). Springer, Cham.
22. Majidi, A. N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., & Kluck, J. (2019). Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustainability, 11(22), 6361.
23. Malgwi, M. B., Ramirez, J. A., Zischg, A., Zimmermann, M., Schürmann, S., & Keiler, M. (2021). A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood. Natural Hazards, 108(2), 1781-1805.
24. Metcalfe, C. D., Nagabhatla, N., & Fitzgerald, S. K. (2018). Multifunctional wetlands: pollution abatement by natural and constructed wetlands. In Multifunctional Wetlands (pp. 1-14). Springer.
25. Mo’allim, A. A., Kamal, M. R., Muhammed, H. H., Yahaya, N. K. E., Zawawe, M. A. B. M., Man, H. b. C., & Wayayok, A. (2018). An assessment of the vertical movement of water in a flooded paddy rice field experiment using Hydrus-1D. Water, 10(6), 783.
26. Moosavi, S., & Lancaster, M. (2018). Are our coastal managment strategies inspired by nature-based solutions? A review of the Moolap development framework plan.
27. Mubeen, A., Ruangpan, L., Vojinovic, Z., Sanchez Torrez, A., & Plavšić, J. (2021). Planning and suitability assessment of large-scale nature-based solutions for flood-risk reduction. Water Resources Management, 35(10), 3063-3081.
28. Nassary, E. K., Msomba, B. H., Masele, W. E., Ndaki, P. M., & Kahangwa, C. A. (2022). Exploring urban green packages as part of Nature-based Solutions for climate change adaptation measures in rapidly growing cities of the Global South. Journal of Environmental Management, 310, 114786.
29. OECD. (2020). Nature-based solutions for adapting to water-related climate risks. OECD Environment Policy Papers, 32. https://doi.org/ https://doi.org/10.1787/23097841
30. Ozment, S., Ellison, G., & Jongman, B. (2022). Nature-Based Solutions for Disaster Risk Management: Booklet.
31. Pagano, A., Pluchinotta, I., Pengal, P., Cokan, B., & Giordano, R. (2019). Engaging stakeholders in the assessment of NBS effectiveness in flood risk reduction: A participatory System Dynamics Model for benefits and co-benefits evaluation. Science of The Total Environment, 690, 543-555.
32. Pauleit, S., Zölch, T., Hansen, R., Randrup, T. B., & Konijnendijk van den Bosch, C. (2017). Nature-based solutions and climate change–four shades of green. In Nature-Based solutions to climate change adaptation in urban areas (pp. 29-49). Springer, Cham.
33. Rossman. L., & Huber., W. (2015). Storm Water Management Model Reference Manual Volume I, Hydrology. U.S. EPA Office of Research and Development. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NYRA.txt
34. Rossman. L., & Huber., W. (2016). Storm Water Management Model Reference Manual Volume III Water Quality. U.S. EPA Office of Research and Development. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100P2NY.txt
35. Ruangpan, L., Vojinovic, Z., Plavšić, J., Doong, D.-J., Bahlmann, T., Alves, A., Tseng, L.-H., Randelović, A., Todorović, A., & Kocic, Z. (2021). Incorporating stakeholders’ preferences into a multi-criteria framework for planning large-scale Nature-Based Solutions. Ambio, 50(8), 1514-1531.
36. Sauer, I., Roca, E., & Villares, M. (2022). Beach users’ perceptions of coastal regeneration projects as an adaptation strategy in the western Mediterranean. Journal of Hospitality & Tourism Research, 46(3), 418-441.
37. Semeraro, T., Aretano, R., & Pomes, A. (2019). Green roof technology as a sustainable strategy to improve water urban availability. IOP Conference Series: Materials Science and Engineering,
38. Shin, J.-H., Nam, W.-H., Bang, N.-K., Kim, H.-J., An, H.-U., Do, J.-W., & Lee, K.-Y. (2020). Assessment of water distribution and irrigation efficiency in agricultural reservoirs using SWMM model. Journal of the Korean Society of Agricultural Engineers, 62(3), 1-13.
39. Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., & Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769-1782.
40. Song, C. (2022). Application of nature-based measures in China′s sponge city initiative: Current trends and perspectives. Nature-Based Solutions, 2, 100010.
41. Spyrou, C., Loupis, M., Charizopoulos, Ν., Apostolidou, I., Mentzafou, A., Varlas, G., Papadopoulos, A., Dimitriou, E., Panga, D., & Gkeka, L. (2021). Evaluating nature-based solution for flood reduction in spercheios river basin under current and future climate conditions. Sustainability, 13(7), 3885.
42. Turconi, L., Faccini, F., Marchese, A., Paliaga, G., Casazza, M., Vojinovic, Z., & Luino, F. (2020). Implementation of nature-based solutions for hydro-meteorological risk reduction in small mediterranean catchments: The case of Portofino Natural Regional Park, Italy. Sustainability, 12(3), 1240.
43. Vojinovic, Z., Alves, A., Gómez, J. P., Weesakul, S., Keerakamolchai, W., Meesuk, V., & Sanchez, A. (2021). Effectiveness of small-and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Science of The Total Environment, 789, 147725.
44. Young, A. F., Marengo, J. A., Coelho, J. O. M., Scofield, G. B., de Oliveira Silva, C. C., & Prieto, C. C. (2019). The role of nature-based solutions in disaster risk reduction: the decision maker′s perspectives on urban resilience in São Paulo state. International Journal of Disaster Risk Reduction, 39, 101219.
45. Zölch, T., Henze, L., Keilholz, P., & Pauleit, S. (2017). Regulating urban surface runoff through nature-based solutions–an assessment at the micro-scale. Environmental Research, 157, 135-144.
46. 朱淑娟. (2021). 在地滯洪設施,成為適應洪水的新方案. Retrieved 08月03日 from https://www.storm.mg/article/3854648
47. 吳富春, & 沈易徵. (1998). 水田蓄水對植生環境之衝擊分析. 八十七年度農業工程研討會,
48. 吳瑞賢, 劉日順, 張聖瑜, 蘇家陞, & 陳佩螢. (2018). 建立水旱作混植區之地表水與地下水聯合灌溉管理模式. 農業工程學報, 64(1), 60-90.
49. 李哲瑋, 羅偉誠, 陳主惠, 葉昭龍, & 葉信富. (2015). 水飽和度及土壤質地對未飽和土壤壓密過程之影響評估. 農業工程學報, 61(2), 1-27.
50. 林喬莉. (2009). 以系統動力模式評估水田埤塘灌溉系統 中央大學土木工程研究所]. 桃園市.
51. 林震. (2019). 灌溉排水概要. 千華數位文化股份有限公司.
52. 洪祥峰. (2021). 應用綠屋頂水文模式分析不同雨量與臨前含水量下之減洪效用 國立中央大學]. 桃園市.
53. 桃園市政府. (2020). 擬定大園都市計畫(部分農業區為工業區及河川區)細部計畫案計畫書.
54. 桃園市政府水務局. (2019). 桃園市雨水流出抑制設施設計參考手冊. 桃園市政府水務局.
55. 陳柏智. (2020). 基於自然解決方案之都市河川洪氾平原管理—以二重疏洪道為例 國立台灣大學]. 台北市. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8337
56. 游保衫. (2020). 因應氣候變遷洪災韌性提升策略建構(2/2). 經濟部水利署.
57. 黃英明. (2007). 桃園地區蒸發散量之研究 中國文化大學].
58. 黃群玲. (2010). 考量降雨入滲於河岸穩定分析模式之建立與應用 國立交通大學].
59. 經濟部水利署. (2018). 水利法修正通過「逕流分擔與出流管制」未來可有效提升土地耐淹能力. 水利署電子報, 第286期.
60. 經濟部水利署北區水資源局. (2007). 多元化水資源開發─桃園及新竹地區農業迴歸水調查與可行性評估. https://doi.org/https://www.wranb.gov.tw/media/382009/%E5%A4%9A%E5%85%83%E5%8C%96%E6%B0%B4%E8%B3%87%E6%BA%90%E9%96%8B%E7%99%BC-%E6%A1%83%E5%9C%92%E5%8F%8A%E6%96%B0%E7%AB%B9%E5%9C%B0%E5%8D%80%E8%BE%B2%E6%A5%AD%E8%BF%B4%E6%AD%B8%E6%B0%B4%E8%AA%BF%E6%9F%A5%E8%88%87%E5%8F%AF%E8%A1%8C%E6%80%A7%E8%A9%95%E4%BC%B0po%E7%B6%B2.pdf
61. 經濟部水利署北區水資源局. (2009). 利用田坵蓄水及稻作調整以豐沛桃竹地區水資源之可行性研究. 財團法人農業工程研究中心.
62. 農地重劃區設置貯蓄水設施之探討成果報告書. (2020). 財團法人台灣水資源與農業研究院.
63. 歐陽嶠暉. (2014). 臺灣水資源效率化利用策略. https://www.ctci.org.tw/media/3015/%E5%B0%88%E9%A1%8C%E5%A0%B1%E5%91%8A2014-05%E8%87%BA%E7%81%A3%E6%B0%B4%E8%B3%87%E6%BA%90%E6%95%88%E7%8E%87%E5%8C%96%E5%88%A9%E7%94%A8%E7%AD%96%E7%95%A5-%E5%85%A8%E6%96%87.pdf
64. 賴文龍、郭雅紋. (2015). 水稻栽培管理技術手冊. 台中區農業技術專刊.
65. 龎傳慶. (2021). 綠屋頂能量傳遞特性、室內降溫及節能效益分析與模擬用 國立中央大學]. 桃園市.
66. 顧玉蓉. (2021). 「保水養地,藏水以農」 看頭社盆地如何靠「田埂」提升對抗逆境的韌性、守護泥炭土. Retrieved 05月27日 from https://e-info.org.tw/node/231262
指導教授 陳沛芫 馬家齊(Pei-Yuan Chen Chia-Chi Ma) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明