博碩士論文 110626005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.133.137.53
姓名 林品潔(Pin-Jie Lin)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 以非連續雙黏性流分析 Claviaster libycus 於大滅絕時之生存優勢及海工結構物外型對局部沖刷之影響
(Analyzing the survival advantage of Claviaster libycus during Mass Extinction and the impact of hydraulic structure geometry on local scour using Discontinuous Bi-viscous Model)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 先前的研究指出,歪型海膽是由侏羅紀早期的正型海膽演化而來。牠的生活習性逐漸從原本的海底基質之上演化為潛入泥沙中。相較於正形海膽的五輻對稱,歪形海膽的體軸演化為雙軸對稱。其成功躲過大滅絕事件的能力被歸因於其擁有潛沙的技巧,這也成為歪形海膽在新生代繁盛的重要原因之一。在這個背景下,我們提出了一個問題:為何歪型海膽能夠成功存活?是因為牠具備潛沙的能力,還是由於其獨特的外型構造呢?我們的假設是,歪型海膽獨特的外型可能有助於防止底部的沙子被沖走。若這一研究成功,未來或許能將其應用在減少橋墩局部沖刷的工程領域。
為了瞭解歪形海膽在大滅絕中的生存優勢,本研究以隸屬歪型海膽下綱的
Claviaster libycus作為研究對象,透過實驗和數值模式,探討其獨特外型所產生的局部沖刷效應。實驗方面,利用水槽執行蓄水深度為0.1公尺的潰壩水流來模擬大滅絕時產生的極端水流。數值模式則是使用Splash3D 進行模擬,透過求解Navier-Stokes方程式,結合本研究室開發之非連續雙黏性流模型(Discontinuous Bi-Viscous Model, DBM),對水體流動和底砂運移之過程進行模擬和分析。
在探討歪形海膽在大滅絕事件中的生存優勢的基礎上,我們進一步將焦點轉向將其研究成果應用於減少橋墩局部沖刷的可能性。在進行實驗時,我們模擬了大滅絕時期極端水流對歪形海膽所造成的沖刷影響。這種模擬不僅有助於瞭解歪形海膽生存的機制,同時也提供了一個可行的思路,即是否能夠將歪形海膽的生存技巧應用在工程領域,特別是減少橋墩局部沖刷的工程挑戰。因此,我們也執行圓柱跟方柱橋墩的實驗和數值模擬,以了解造成局部沖刷之因素。
研究結果顯示當Claviaster libycus的生殖孔指向下游時,馬蹄形渦流並不明顯,確實有助於減少局部沖刷的發生,而這也驗證了本研究提出之假設:海膽從五輻對稱、不會潛沙,演化為雙軸對稱、會潛沙,對於穩定底部沉積物、減少局部沖刷發生是有幫助的。無論是圓柱還是方柱,都伴隨著明顯的局部沖刷,而方柱的沖刷深度尤其劇烈。進一步的分析指出,方柱由於其較大的迎水面積阻礙了水流,導致強烈的向下水流和馬蹄漩渦的形成。為減緩橋墩周圍的局部沖刷,建議應設計具有流線型形狀的橋墩。此外,Claviaster libycus的形態啟示將有望應用於開發橋墩的防護裝置。
摘要(英) Previous research suggests that irregular echinoids evolved from the early Jurassic regular echinoids. Their lifestyle transitioned from residing on the seafloor substrate to burrowing into sediment. In contrast to the five-fold symmetry of regular echinoids, irregular echinoids exhibit bilateral symmetry. The survival capability of irregular echinoids during mass extinction events is attributed to their burrowing skills, a crucial factor in their prosperity in the Cenozoic era. In this context, a fundamental question arises: What enables the successful survival of irregular echinoids? Is it their burrowing capability or their distinctive morphological features? Our hypothesis posits that the unique morphology of irregular echinoids may aid in preventing the erosion of sediment from the seafloor. If successful, this study could be applied to mitigate local scour around bridge piers.
This study focuses on Claviaster libycus, a member of the irregular echinoid subclass, to understand the survival advantages of irregular echinoids during mass extinctions. We investigate the local scouring effects resulting from its unique morphology through experiments and numerical modeling. Experimental simulations involve dam-break flows with the impoundment depth of 0.1 meters to mimic extreme flow conditions during mass extinction events. Numerical simulations utilize the Splash3D model, solving the Navier-Stokes equations with the developed Discontinuous Bi-Viscous Model (DBM) to simulate and analyze water flow and sediment transport processes.
Building upon the insights gained from exploring the survival advantages of irregular echinoids, our attention shifts to the potential application of these findings to mitigate local scour around bridge piers. Experimental simulations mimic the scouring impact on irregular echinoids during extreme flows typical of mass extinction periods. This simulation not only aids in understanding the survival mechanisms of irregular echinoids but also provides a feasible approach to applying their survival techniques in engineering, particularly addressing the challenge of local scour around bridge piers. Consequently, experiments and numerical simulations are conducted on cylindrical and square column piers to understand the factors contributing to local scour.
The research results demonstrate that when the gonopore of Claviaster libycus is directed downstream, the formation of horseshoe vortices is not prominent, effectively reducing the occurrence of local scouring. This validates the hypothesis proposed in this study: sea urchins evolve from pentaradial symmetry, non-burrowing, to bilateral symmetry, burrowing, assisting in stabilizing bottom sediments and reducing the incidence of local scouring. Both cylindrical and square columns exhibit noticeable local scouring, with the square column experiencing particularly intense scouring depths. Further analysis indicates that the larger water-facing area of the square column hinders the flow, resulting in strong downward flows and horseshoe vortices. To mitigate local scouring around bridge piers, designing piers with streamlined shapes is recommended. Additionally, the morphological insights from Claviaster libycus have the potential for application in developing protective devices for bridge piers.
關鍵字(中) ★ Splash3D
★ Discontinuous Bi-Viscous Model
★ Claviaster libycus
★ 局部沖刷
關鍵字(英) ★ Splash3D
★ Discontinuous Bi-Viscous Model
★ Claviaster libycus
★ local scour
論文目次 中文摘要 i
Abstract iii
誌謝 v
Table of contents vi
List of figures ix
List of table xv
CHAPTER 1 Introduction 1
1-1 Purpose of the Research 1
1-2 Literature Review 4
1-2-1 Computational Fluid Dynamics Applied to Paleontological Research 4
1-2-2 Effect of pier shape on local scour 7
1-3 Scope of Present Study 9
CHAPTER 2 Methods and Materials 10
2-1 Materials 10
2-1-1 Specimen Selection 10
2-1-2 Digital Modeling 12
2-2 Splash 3D Model 14
2-2-1 Governing Equation 14
2-2-2 Finite Volume Method 16
2-2-3 The Volume of Fluid method 17
2-2-4 Partial-Cell Method 20
2-2-5 Projection method 21
2-2-6 Discontinuous Bi-viscous Model 23
CHAPTER 3 Model Validation 29
3-1 Experimental setup 29
3-2 Numerical setup 37
3-3 Model validation on the final equilibrium scour results 40
3-3-1 Sphere 40
3-3-2 Cylinder 40
3-3-3 Square column 41
3-3-4 Summary 42
CHAPTER 4 Result and Discussion 46
4-1 Experimental results 46
4-1-1 Sphere 46
4-1-2 Cylinder 53
4-1-3 Square column 59
4-1-4 Gonopore faces upstream 64
4-1-5 Gonopore faces downstream 73
4-1-6 Discussion of experimental results 80
4-2 Numerical results 83
4-2-1 Sphere 83
4-2-2 Cylinder 94
4-2-3 Square column 105
4-2-4 Gonopore faces upstream 117
4-2-5 Gonopore faces downstream 129
4-2-6 Discussion of numerical results 140
CHAPTER 5 Application 143
5-1 Cylinder 143
5-2 Claviaster libycus with a cylinder 154
5-3 Discussion of numerical results 164
CHAPTER 6 Conclusion and Future works 166
6-1 Conclusion 166
6-2 Future works 168
REFERENCES 169
口試書面答覆表 174
參考文獻 Abdelhamid, M. A. M. (2014). Middle–upper Cenomanian echinoids from north Wadi Qena, North Eastern Desert, Egypt. Cretaceous Research, 50, 138-170.
ABDELHAMID, M. M., & Azab, M. (2003). Aptian-Cenomanian echinoids from Egypt. Revue de Paléobiologie, 22(2), 851-876.
Ali, M. S. M. (1992). Additional echinoids from the Late Maestrichtian (Cretaceous) of Gebel El Rowdah, Oman United Arab Emirates. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 65-74.
Blettler, M., Sukhodolov, A., & Tockner, K. (2010). Hydraulic conditions over bed forms control the benthic fauna distribution in a lowland river (Spree River, Germany). Proceeding of River Flow 2010, 1463-1468.
Boon, A. (2020). Drag of a surface piercing cylinder in fast current and low waves: On the drag of a vertical surface piercing cylinder for supercritical to transcritical Reynolds numbers and low Keulegan-Carpenter numbers.
Botella, H., & Fariña, R. A. (2008). Flow pattern around the rigid cephalic shield of the Devonian agnathan Errivaspis waynensis (Pteraspidiformes: Heterostraci). Palaeontology, 51(5), 1141-1150.
Botting, J. P., & Muir, L. A. (2012). Fauna and ecology of the Holothurian Bed, Llandrindod, Wales, UK (Darriwilian, Middle Ordovician), and the oldest articulated holothurian. Palaeontologia Electronica, 15(1), 1-28.
Cracknell, K., García-Bellido, D. C., Gehling, J. G., Ankor, M. J., Darroch, S. A., & Rahman, I. A. (2021). Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities. Scientific reports, 11(1), 4121.
Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P. C. (2014). A virtual world of paleontology. Trends in ecology & evolution, 29(6), 347-357.
Darroch, S. A., Gutarra, S., Masaki, H., Olaru, A., Gibson, B. M., Dunn, F. S., Mitchell, E. G., Racicot, R. A., Burzynski, G., & Rahman, I. A. (2023). The rangeomorph Pectinifrons abyssalis: hydrodynamic function at the dawn of animal life. iScience, 105989.
Darroch, S. A., Rahman, I. A., Gibson, B., Racicot, R. A., & Laflamme, M. (2017). Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biology Letters, 13(5), 20170033.
Dec, M. (2019). Hydrodynamic performance of psammosteids: New insights from computational fluid dynamics simulations. Acta Palaeontologica Polonica, 64(4).
Dynowski, J. F., Nebelsick, J. H., Klein, A., & Roth-Nebelsick, A. (2016). Computational fluid dynamics analysis of the fossil crinoid Encrinus liliiformis (Echinodermata: Crinoidea). PLoS One, 11(5), e0156408.
Esteve, J., López, M., Ramírez, C.-G., & Gómez, I. (2021). Fluid dynamic simulation suggests hopping locomotion in the Ordovician trilobite Placoparia. Journal of Theoretical Biology, 531, 110916.
Ferron, H., Martinez-Perez, C., Rahman, I., & Selles de Lucas, V. (2021). Botella, H., & Donoghue, PCJ (2021). Functional assessment of morphological homoplasy in stem-gnathostomes. Proceedings of the Royal Society B: Biological Sciences, 288 (1943),[20202719].
Gauthier, V. (1889). Description des échinides fossiles recueillis en 1885 et 1886 dans la région sud des hauts-plateaux de la Tunisie par M. Philippe Thomas. Imprimerie nationale.
Gibson, B., Darroch, S., Maloney, K., & Laflamme, M. (2022). The Importance of Size and Location Within Gregarious Populations of. Precambrian Paleontology.
Gibson, B. M., Furbish, D. J., Rahman, I. A., Schmeeckle, M. W., Laflamme, M., & Darroch, S. A. (2021). Ancient life and moving fluids. Biological Reviews, 96(1), 129-152.
Gibson, B. M., Rahman, I. A., Maloney, K. M., Racicot, R. A., Mocke, H., Laflamme, M., & Darroch, S. A. (2019). Gregarious suspension feeding in a modular Ediacaran organism. Science Advances, 5(6), eaaw0260.
Hebdon, N., Ritterbush, K., & Choi, Y. (2020). Computational fluid dynamics modeling of fossil ammonoid shells. Palaeontologia Electronica.
Hewaidy, A., Nagm, E., & Moneer, E. (2014). Cenomanian-Turonian bivalves and echinoids from northern wadi qena, central eastern desert, Egypt. Egyptian Journal of Paleontology, 14, 209-242.
Hill, S. A. (2022). Functional Morphology and Taphonomy of Ordovician–Silurian Diploporan Echinoderms University of South Florida].
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
Huynh, T. L., Evangelista, D., & Marshall, C. R. (2015). Visualizing the fluid flow through the complex skeletonized respiratory structures of a blastoid echinoderm. Palaeontologia Electronica, 1-17.
Jaramillo, E., Dugan, J. E., Hubbard, D. M., Melnick, D., Manzano, M., Duarte, C., Campos, C., & Sanchez, R. (2012). Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean coast. PLoS One, 7(5), e35348.
Kier, P. M. (1962). Revision of the cassiduloid echinoids. Smithsonian Miscellaneous Collections.
Kogan, I., Pacholak, S., Licht, M., Schneider, J. W., Brücker, C., & Brandt, S. (2015). The invisible fish: hydrodynamic constraints for predator-prey interaction in fossil fish Saurichthys compared to recent actinopterygians. Biology Open, 4(12), 1715-1726.
Kothe, D., Rider, W., Mosso, S., Brock, J., & Hochstein, J. (1996). Volume tracking of interfaces having surface tension in two and three dimensions. 34th aerospace sciences meeting and exhibit,
Lam, K. M., Hu, J., & Liu, P. (2010). Vortex formation processes from an oscillating circular cylinder at high Keulegan–Carpenter numbers. Physics of Fluids, 22(1).
Lan, T., Zhao, Y., Esteve, J., Zhao, F., Li, C., & Martinez, P. (2021). Eggs With Trilobite Larvae in a Cambrian Community. Modeling the Hydrodynamics.
Liu, P.-F., Wu, T.-R., Raichlen, F., Synolakis, C., & Borrero, J. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144.
Mortensen, T. (1948). A Monograph of the Echinoidea, Vol. 4, No. 1 Holectypoida, Cassiduloida-Text and Plates.
Nakato, T., Christensen, J., & Schonhoff, B. (2007). Freshwater mussel survey in pool 16, the mississippi river, near fairport, iowa: Rm 463.5-rm 464.1, approximately.
Néraudeau, D., & Mouty, M. (2021). Archiacia ramitaensis nov. sp., un nouvel échinide Archiaciidae du Cénomanien de Syrie. Annales de Paléontologie,
Otsuka, K., & Ikeda, Y. (1996). Estimation of inertia forces on a horizontal circular cylinder in regular and irregular waves at low Keulegan-Carpenter numbers. Applied ocean research, 18(2-3), 145-156.
Pates, S., Daley, A. C., Legg, D. A., & Rahman, I. A. (2021). Vertically migrating Isoxys and the early Cambrian biological pump. Proceedings of the Royal Society B, 288(1953), 20210464.
Rahman, I. A. (2017). Computational fluid dynamics as a tool for testing functional and ecological hypotheses in fossil taxa. Palaeontology, 60(4), 451-459.
Rahman, I. A. (2020). Computational fluid dynamics and its applications in echinoderm palaeobiology. Cambridge University Press.
Rahman, I. A., Darroch, S. A., Racicot, R. A., & Laflamme, M. (2015). Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances, 1(10), e1500800.
Rahman, I. A., & Lautenschlager, S. (2016). Applications of three-dimensional box modeling to paleontological functional analysis. The Paleontological Society Papers, 22, 119-132.
Rahman, I. A., O′Shea, J., Lautenschlager, S., & Zamora, S. (2020). Potential evolutionary trade‐off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5), 689-701.
Rahman, I. A., Zamora, S., Falkingham, P. L., & Phillips, J. C. (2015). Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B: Biological Sciences, 282(1818), 20151964.
Rider, W. J., & Kothe, D. B. (1998). Reconstructing volume tracking. Journal of computational physics, 141(2), 112-152.
Rigby, S., & Tabor, G. (2006). The use of computational fluid dynamics in reconstructing the hydrodynamic properties of graptolites. Gff, 128(2), 189-194.
Seike, K., Shirai, K., & Kogure, Y. (2013). Disturbance of shallow marine soft-bottom environments and megabenthos assemblages by a huge tsunami induced by the 2011 M9. 0 Tohoku-Oki earthquake. PLoS One, 8(6), e65417.
Shiino, Y. (2010). Passive feeding in spiriferide brachiopods: an experimental approach using models of Devonian Paraspirifer and Cyrtospirifer. Lethaia, 43(2), 223-231.
Shiino, Y., & Kuwazuru, O. (2010). Functional adaptation of spiriferide brachiopod morphology. Journal of Evolutionary Biology, 23(7), 1547-1557.
Shiino, Y., & Kuwazuru, O. (2011). Theoretical approach to the functional optimisation of spiriferide brachiopod shell: optimum morphology of sulcus. Journal of Theoretical Biology, 276(1), 192-198.
Shiino, Y., Kuwazuru, O., Suzuki, Y., & Ono, S. (2012). Swimming capability of the remopleuridid trilobite Hypodicranotus striatus: hydrodynamic functions of the exoskeleton and the long, forked hypostome. Journal of Theoretical Biology, 300, 29-38.
Shiino, Y., Kuwazuru, O., Suzuki, Y., Ono, S., & Masuda, C. (2014). Pelagic or benthic? Mode of life of the remopleuridid trilobite Hypodicranotus striatulus. Bulletin of Geosciences, 89(2).
Shiino, Y., Kuwazuru, O., & Yoshikawa, N. (2009). Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): generating mechanism of passive feeding flows. Journal of Theoretical Biology, 259(1), 132-141.
Shiino, Y., & Tokuda, Y. (2016). How does flow recruit epibionts onto brachiopod shells? Insights into reciprocal interactions within the symbiotic framework. Palaeoworld, 25(4), 675-683.
Song, H., Song, H., Rahman, I. A., & Chu, D. (2021). Computational fluid dynamics confirms drag reduction associated with trilobite queuing behaviour. Palaeontology, 64(5), 597-608.
Soufi, H., & Sabeur, A. (2023). Numerical simulation of oscillating cylinder in a mean flow at low Keulegan-Carpenter and Stokes numbers. Ocean Engineering, 281, 114551.
Thompson, J. R., Cotton, L. J., Candela, Y., Kutscher, M., Reich, M., & Bottjer, D. J. (2022). The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata: Echinoidea). Journal of Systematic Palaeontology, 19(20), 1395-1448.
Vuong, T.-H.-N. (2022). Development and Application of Discontinuous Bi-Viscous Model to Mudslides, Landslide Tsunamis, and Local Scours
Vuong, T.-H.-N., Wu, T.-R., Wang, C.-Y., & Chu, C.-R. (2020). Modeling the slump-type landslide tsunamis part II: Numerical simulation of tsunamis with Bingham landslide model. Applied Sciences, 10(19), 6872.
Wang, Y., Xu, F., & Zhang, Z. (2020). The secondary load cycle of a bottom-mounted circular cylinder at different Keulgan-Carpenter numbers and Froude numbers. Ocean Engineering, 213, 107675.
Welch, J. R. (1978). Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology, 4(1), 89-95.
Wu, H., & Constantinescu, G. (2022). Effect of angle of attack on flow past a partially-burrowed, isolated freshwater mussel. Advances in water resources, 168, 104302.
Wu, T.-R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Cornell University.
Wu, T.-R., Vuong, T.-H.-N., Lin, C.-W., Wang, C.-Y., & Chu, C.-R. (2020). Modeling the Slump-Type Landslide Tsunamis Part I: Developing a Three-Dimensional Bingham-Type Landslide Model. Applied Sciences, 10(18), 6501.
ZAGHBIB, T. (1981). CLAVIASTER, ECHINIDE CASSIDULOIDE DU CRETACE SUPERIEUR MEDITERRANEEN EST UN ARCHIACIIDAE.
林日白. (2018). 細說海膽化石. In 地質 (Vol. 37).
指導教授 吳祚任(Tso-Ren WU) 審核日期 2024-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明