參考文獻 |
第六章、參考文獻
Uncategorized References
1. Duckett, J.W. and C.E. Koop, Neuroblastoma. Urol Clin North Am, 1977. 4(2): p. 285-95.
2. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 362(23): p. 2202-11.
3. Gomez, R.L., et al., Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer, 2022. 1877(6): p. 188805.
4. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303.
5. . Lancet, 2007. 369(9579): p. 2106-20.
6. DuBois, S.G., et al., Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol, 1999. 21(3): p. 181-9.
7. Grimmer, M.R. and W.A. Weiss, Childhood tumors of the nervous system as disorders of normal development. Curr Opin Pediatr, 2006. 18(6): p. 634-8.
8. Westermark, U.K., et al., The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol, 2011. 21(4): p. 256-66.
9. Otte, J., et al., MYCN Function in Neuroblastoma Development. Front Oncol, 2020. 10: p. 624079.
10. Louis, C.U. and J.M. Shohet, Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med, 2015. 66: p. 49-63.
11. Barone, G., et al., New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin Cancer Res, 2013. 19(21): p. 5814-21.
12. Schwab, M., et al., Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci U S A, 1984. 81(15): p. 4940-4.
13. Zaizen, Y., et al., The effect of N-myc amplification and expression on invasiveness of neuroblastoma cells. J Pediatr Surg, 1993. 28(6): p. 766-9.
14. Bénard, J., Genetic alterations associated with metastatic dissemination and chemoresistance in neuroblastoma. Eur J Cancer, 1995. 31a(4): p. 560-4.
15. Goodman, L.A., et al., Modulation of N-myc expression alters the invasiveness of neuroblastoma. Clin Exp Metastasis, 1997. 15(2): p. 130-9.
16. Beierle, E.A., et al., N-MYC regulates focal adhesion kinase expression in human neuroblastoma. J Biol Chem, 2007. 282(17): p. 12503-16.
17. Megison, M.L., et al., FAK inhibition decreases cell invasion, migration and metastasis in MYCN amplified neuroblastoma. Clin Exp Metastasis, 2013. 30(5): p. 555-68.
18. Tan, Y.T., et al., LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Communications, 2021. 41(2): p. 109-120.
19. Yao, R.W., Y. Wang, and L.L. Chen, Cellular functions of long noncoding RNAs. Nat Cell Biol, 2019. 21(5): p. 542-551.
20. Kopp, F. and J.T. Mendell, Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 2018. 172(3): p. 393-407.
21. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14.
22. Yang, R., et al., LncRNA AC142119.1 facilitates the progression of neuroblastoma by epigenetically initiating the transcription of MYCN. Journal of Translational Medicine, 2023. 21(1): p. 659.
23. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith, The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol, 2004. 36(2): p. 189-204.
24. Jones, S., An overview of the basic helix-loop-helix proteins. Genome Biology, 2004. 5(6): p. 226.
25. Schmidt, J.V., et al., Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci U S A, 1996. 93(13): p. 6731-6.
26. Xu, C.X., et al., Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obes (Lond), 2015. 39(8): p. 1300-1309.
27. Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40.
28. Barouki, R., X. Coumoul, and P.M. Fernandez-Salguero, The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett, 2007. 581(19): p. 3608-15.
29. Fujii-Kuriyama, Y. and K. Kawajiri, Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad Ser B Phys Biol Sci, 2010. 86(1): p. 40-53.
30. Denison, M.S. and S. Heath-Pagliuso, The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol, 1998. 61(5): p. 557-68.
31. Nagy, S.R., et al., Development of a green fluorescent protein-based cell bioassay for the rapid and inexpensive detection and characterization of ah receptor agonists. Toxicol Sci, 2002. 65(2): p. 200-10.
32. Nagy, S.R., et al., Identification of novel Ah receptor agonists using a high-throughput green fluorescent protein-based recombinant cell bioassay. Biochemistry, 2002. 41(3): p. 861-8.
33. Denison, M.S. and S.R. Nagy, Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol, 2003. 43: p. 309-34.
34. Rannug, U., et al., Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol, 1995. 2(12): p. 841-5.
35. Adachi, J., et al., Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem, 2001. 276(34): p. 31475-8.
36. Heath-Pagliuso, S., et al., Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry, 1998. 37(33): p. 11508-15.
37. Opitz, C.A., et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478(7368): p. 197-203.
38. Daley, W.P., S.B. Peters, and M. Larsen, Extracellular matrix dynamics in development and regenerative medicine. Journal of cell science, 2008. 121(3): p. 255-264.
39. Riecke, K., et al., Low doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin increase transforming growth factor β and cause myocardial fibrosis in marmosets (Callithrix jacchus). Archives of toxicology, 2002. 76.
40. Nottebrock, C., et al., Effects of 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin on the extracellular matrix of the thymus in juvenile marmosets (Callithrix jacchus). Toxicology, 2006. 226(2-3): p. 197-207.
41. Thackaberry, E., et al., Toxicogenomic profile of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicological Sciences, 2005. 88(1): p. 231-241.
42. Aragon, A.C., et al., In utero and lactational 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicological sciences, 2008. 101(2): p. 321-330.
43. Larigot, L., et al., AhR signaling pathways and regulatory functions. Biochim Open, 2018. 7: p. 1-9.
44. Ohira, M., et al., Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 2005. 7(4): p. 337-350.
45. Wu, P.-Y., et al., Aryl Hydrocarbon Receptor Downregulates MYCN Expression and Promotes Cell Differentiation of Neuroblastoma. PLOS ONE, 2014. 9(2): p. e88795.
46. Wu, P.Y., et al., Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS One, 2014. 9(2): p. e88795.
47. Wu, P.Y., et al., Activation of Aryl Hydrocarbon Receptor by Kynurenine Impairs Progression and Metastasis of Neuroblastoma. Cancer Res, 2019. 79(21): p. 5550-5562.
48. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.
49. Zhao, R., Z. Wu, and Q. Zhou, [Epithelial-mesenchymal transition and tumor metastasis]. Zhongguo Fei Ai Za Zhi, 2011. 14(7): p. 620-4.
50. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
51. Aizawa, H. and H. Tagami, Delayed tissue necrosis due to mitomycin C. Acta Derm Venereol, 1987. 67(4): p. 364-6.
52. Miles, F.L., et al., Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis, 2008. 25(4): p. 305-24.
53. Hlubek, F., et al., Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer, 2004. 108(2): p. 321-6.
54. Gavert, N., et al., L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol, 2005. 168(4): p. 633-42.
55. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39.
56. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37.
57. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
58. Yang, J. and R.A. Weinberg, Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental Cell, 2008. 14(6): p. 818-829.
59. Antkiewicz, D.S., et al., Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci, 2005. 84(2): p. 368-77.
60. Hay, E.D. and A. Zuk, Transformations between epithelium and mesenchyme: Normal, pathological, and experimentally induced. American Journal of Kidney Diseases, 1995. 26(4): p. 678-690.
61. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 2005. 17(5): p. 548-558.
62. Puisieux, A., T. Brabletz, and J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nature Cell Biology, 2014. 16(6): p. 488-494.
63. Morgan, M.R., M.J. Humphries, and M.D. Bass, Synergistic control of cell adhesion by integrins and syndecans. Nature Reviews Molecular Cell Biology, 2007. 8(12): p. 957-969.
64. Halbleib, J.M. and W.J. Nelson, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev, 2006. 20(23): p. 3199-214.
65. Yan, Q., et al., Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma. Int J Oncol, 2008. 32(5): p. 1057-63.
66. Niermann, T., et al., Aryl hydrocarbon receptor ligands repress T-cadherin expression in vascular smooth muscle cells. Biochem Biophys Res Commun, 2003. 300(4): p. 943-9.
67. Thackaberry, E.A., et al., Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicol Sci, 2005. 88(1): p. 231-41.
68. Dietrich, C., et al., TCDD-dependent downregulation of gamma-catenin in rat liver epithelial cells (WB-F344). Int J Cancer, 2003. 103(4): p. 435-9.
69. Wu, P.Y., et al., Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci, 2019. 10(9): p. 4031-4042. |