博碩士論文 109226003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.217.178.196
姓名 邱承中(Cheng-Chung Chiu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電光調制積體週期性晶疇極化反轉鈮酸鋰自發參量下轉換晶片產生雙偏振正交光子對之研究
(The study of electro-optically controlled integrated periodically poled lithium niobate spontaneous parametric down-conversion chip for dual orthogonal-polarization photon-pair generation)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究設計四段式的鈮酸鋰鈦擴散波導結構,利用兩段type 0的自發性參量下轉換(spontaneous parametric down-conversion,SPDC)週期晶疇極化反轉結構且兩段SPDC之間加上一段基於鈮酸鋰的電光效應利用基因演算法計算出的非週期晶疇極化反轉結構最後再加上一段加z方向電場的電極結構,達成以一片晶片產生兩對偏振正交|HH⟩和|VV⟩的光子對,並利用半導體製程的技術,將此四段式的晶片結構實現。
在此四段式的晶片上,第一段為透過特定的週期性極化反轉結構設計滿足準相位匹配藉此產生|VV⟩的光子對,接著利用基因演算法計算並設計出電光非週期極化反轉結構產生在施加55V y方向電壓時,得到模態轉換在波長為1569nm處可高達99%,且有7nm的頻寬其模態轉換可達90%以上,使此晶片可透過此非週期的結構設計使前段|VV⟩的光子對轉換為|HH⟩的光子對,在經由第三段與第一段相同的週期性結構設計產生|VV⟩的光子對,並且設計第四段的結構利用加z方向電場進行相位調製。
所以利用單一晶片即可產生兩對偏振正交|HH⟩和|VV⟩的光子對,且對其相位進行調製,所以此晶片基於能產生兩對偏振正交的光子對,在未來透過後續的量測架設,將可產生量子糾纏態1/√2(|HH⟩+|VV⟩)。
摘要(英) In this thesis, we report on the study of a highly integrated polarization-correlated photon-pair source at telecom L-band, based on two equal subsequent type-0 spontaneous parametric down-converters (SPDC) in a Ti-diffused periodically poled lithium niobate (Ti:PPLN) waveguide. By introducing an electro-optic polarization mode converter (EOPMC) between the two identical SPDC sections, the polarization correlation states of the dual output photon pairs can be fast controlled simply by tuning the applied field. Finally, another EO phase modulation section is added into the chip to control the phase shifts between the dual output photon pairs. Corresponding theoretical analyses and experimental verifications were carried out to investigate the characteristics of the source with classical and quantum approaches. The generated photon pair can be efficiently controlled its polarization, making the chip provide two orthogonal two-photon states and even generate an entangled state with a tunable phase without further optical setup. The developed chip provides a compact and robust platform for generating and manipulating nonclassical light, which has huge potential for application to optical quantum computing and quantum communication.
In this four-stage chip, the first stage is designed to generate |VV⟩ photon pairs. And then by using genetic algorithms, we calculate and design the aperiodic poling structure, which can achieve high efficiency polarization mode conversion when a y-direction voltage of 55V is applied. The mode conversion efficiency can be up to 99% at a wavelength of 1569nm, and it can reach more than 90% with a bandwidth of 7nm. The aperiodic structure converts the photon pairs of |VV⟩ states to |HH⟩ ones, and then the photon pairs of |VV⟩ are generated through the same periodic structure as the first one. Finally, the fourth phase-modulated section is designed by applying an electric field in the z-direction to the waveguide.
By using this approach, we can generate two pairs of photons with orthogonal polarizations |HH⟩ and |VV⟩ by just only one single chip, and their phase differences can be modulated by tuning the electric field. The chip, with an external measurement setup, can achieve quantum entangled states 1/√2(|HH⟩+|VV⟩) in the future.
關鍵字(中) ★ 鈮酸鋰
★ 非週期
★ 波導
★ 偏振模轉換器
★ 相位調製器
★ 量子光源
關鍵字(英) ★ lithium niobate
★ nonperiodic
★ waveguide
★ polarization mode converter
★ phase modulator
★ quantum light source
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目 viii
第一章 緒論 1
1.1積體光路 1
1.2鈮酸鋰晶體 2
1.3研究動機 4
1.4 內容概要 6
第二章 理論 7
2.1 Lithium niobate非線性材料特性 7
2.2二倍頻耦合理論 8
2.3準相位匹配 10
2.4電光效應 12
2.5電光偏振轉換器 18
2.6電光效應相位調製器 24
2.7 非週期寬頻偏振轉換器 27
2.8 非週期極化反轉耦合方程式 28
第三章 元件設計與模擬 31
3.1 晶片結構設計 31
3.2 偏振轉換器與相位調製器模擬 33
第四章 製程 43
4.1 波導黃光微影製程 43
4.2 鈮酸鈮極化反轉製程 50
4.3電極製程 55
第五章 實驗量測與結果分析量測 60
5.1 波導實驗架構及量測 60
5.2 古典量測非線性效應量測架構與量測結果分析 65
5.3 量子架構與量子特性量測 78
第六章 結論與未來展望 90
6.1 結論 90
6.2 未來展望 90
參考文獻 105

參考文獻 [1]. Frank Arute, Kunal Arya, Ryan Babbush, et al., “Quantum supremacy using a programmable superconducting processor”. Nature. 574(7779): p. 505-510, (2019).
[2] Hev-Sec Zong, Hui Wang, Yo-Hac Deng, “Quantum computational advantage using photons”. Nature 574, pages505–510, (2019).
[3]. Ekert, A.K., “Quantum cryptography based on Bell′s theorem”. Physical Review Letters. 67(6): p. 661-663, (1991).
[4] Bennett, C.H., François Bessette, Gilles Brassard, “Experimental quantum cryptography”. Journal of Cryptology”, 5, p.3–28, (1992).
[5] Feihu Xu, Xiongfeng Ma, Qiang Zhang. “Secure quantum key distribution with realistic devices”. Phys. 92, 025002 (2020).
[6] Juan Yin 1 2 3, Yu-Huai Li 1 2 3, Sheng-Kai Liao. “Entanglement-based secure quantum cryptography over 1,120 kilometres”. Nature,582(7813):501-505, (2020).
[7]Rintaro Fujimoto, Tomohiro Yamazaki, Toshiki Kobayashi. “Entanglement distribution using a biphoton frequency comb compatible with DWDM technology”. Optics Express Vol. 30, Issue 20, pp. 36711-36716, (2022).
[8] S. E. miller, “Integrated Optics : an introduction ,” Bell. Syst. Tech. J., 48, p.2059-2069, (1969).
[9] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and
nonlinear-optical performance”, Stanford university, Doctoral dissertation, (1998).
[10] P. Lerner, C. Legras, and J. P. Duman, “Stoechiométrie des Monocristaux de
Métaniobate de Lithium.”, Journal of Crystal Growth, pp. 3-4, (1968).
[11] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料–鈮酸鋰晶體」,科
學出版社,(2005)
[12] Akio Yoshizawaa, Hidemi Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer”. Phys. Lett. 85, 2457, (2004)
[13] I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, “Demonstration of active routing of entanglement in a multi-user network”. Phys. Rev. Lett. 112, (2014)
[14]Burnham, D.C. and D.L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Physical Review Letters, . 25(2): p. 84- 87, (1970)
[15] Sanaka K, Kawahara K, Kuga T, “ New high-efficiency source of photon pairs for engineering quantum entanglement”. Phys Rev Lett, 86(24):5620-3, (2001)
[16] S. Tanzilli, W. Tittel, H. De Riedmatten, “PPLN waveguide for quantum communication”. Phys. J. D 18, 155–160, (2002)
[17] Robert W. Boyd. “Nonlinear Optics”, Third Edition. Academic Press,
Inc., USA, 3rd edition, (2008)
[18] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe. “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation”. Physics Letters, 62(5):435 –436, (1993)
[19] K . K . WONG, ”Properties of Lithium Niobate”, Northstar Photonics , Inc. , USA , (2003)
[20]呂其孟“以非週期性晶疇極化反轉鈮酸鋰達成連續式或主動式 Q-調制雙波長 Nd:YVO4 雷射電光選頻之研究”國立中央大學光電工程所碩士論文, (2019)
[21]黃俊育 “主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究”, 國立中央大學光電工程所碩士論文, (2006)
[22] D. Marcuse, “Optimal_electrode_design_for_integrated_optics_modulators”, IEEE Journal of Quantum Electronics, p. 393 – 398, (1982)
[23] Jianhong Shi, Xianfeng Chen, Yuxing Xia, “Polarization control by use of the electro-optic effect in periodically poled lithium niobate”, Optics Vol. 42, Issue 28, pp. 5722-5725, (2003)
[24] C. H. Lin, Y. H. Chen, S. W. Lin, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate”, Optics Express Vol. 15, Issue 15, pp. 9859-9866, (2007)
[25] L.B.Booker, D.E.Goldberg, J.H.Holland, “Classifier Systems and Genetic Algorithms”, .Artificial Intelligence, 40(1): p. 235-282, 1989
[26] Goldberg, D., B. E. A Korb, and K. Deb, Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex Systems, (1989)
[27] Daniel F. V. James, Paul G. Kwiat, William J. Munro, “Measurement of qubits”, Phys. Rev. A 64, 052312, (2001)
[28] R.T.Thew, K.Nemoto, A.G.White, W.J.Munro, “Qudit Quantum State Tomography”, Physical Review A 66, 012303, (2002)
[29] 賴弘洋 “量子同調性質偵測”, 國立成功大學工程科學系碩士論文, (2014)
[30] J.B.AltepeterE.R.Jeffrey, P.G.Kwiat, “Photonic State Tomography”, scienceDirect, 52,p.105-109, (2005)
[31] Z. Hradil, “Quantum-state estimation”, Lecture Notes in Physics, Atominstitut der O¨sterreichischen Universita¨ten, Schu¨ttelstrasse 115, A-1020 Wien, Austria
, (1996)
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2022-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明