博碩士論文 110451013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:13.59.183.77
姓名 李逸群(I-Chun Lee)  查詢紙本館藏   畢業系所 企業管理學系在職專班
論文名稱 結合人格特質與海報主色以類神經網路推薦電影之研究
(Utilize personality traits and poster colors to recommend movies with neural networks)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 資料視覺化圖表與議題之關聯★ 喪父對人格特質之轉變
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討結合人格特質與海報主色於類神經網路推薦電影之效果。我們使用了Moivelens資料庫的用戶大五人格特質資料,從IMDb網站上蒐集電影海報資料,透過影像處理技術提取出海報主要色彩,再透過多層感知器回歸分析,以推薦符合用戶人格特質與喜好的電影。
實驗結果顯示,將電影評分、人格特質和海報主色結合後,推薦系統的準確性有所提升。回歸分析的結果顯示,此三種資料的解釋力達34.2%,RMSE為0.816,MSE為0.666。
綜合以上結果,本研究提出了一個結合電影評分、人格特質和海報主色的推薦系統,可透過多層感知器回歸分析提供更精確的推薦服務。此推薦系統可為電影愛好者提供更加個性化和符合自身喜好的電影推薦。
摘要(英) This study aims to explore the effectiveness of combining personality traits and poster dominant colors in neural network-based movie recommendations. We used the Big Five personality traits test data from the MovieLens database and collected movie poster data from the IMDb website. Through image processing techniques, we extracted the dominant colors of the posters and used a multi-layer perceptron regression analysis to recommend movies that match user′s personality traits and preferences.
The experimental results showed that the accuracy of the recommendation system improved when combining movie ratings, personality traits, and poster dominant colors. The regression analysis results showed that the explanatory power of these three types of data reached 34.2%, with an RMSE of 0.816 and MSE of 0.666.
Based on these results, this study proposes a recommendation system that combines movie ratings, personality traits, and poster dominant colors, which can provide more accurate recommendation services through multi-layer perceptron regression analysis. This recommendation system can provide movie enthusiasts with more personalized and tailored movie recommendations that align with their preferences.
關鍵字(中) ★ 人格特質
★ 海報主色
★ 多層感知器
★ 推薦系統
★ 電影推薦
關鍵字(英) ★ personality traits
★ poster colors
★ multi-layer perceptron
★ recommendation system
★ movie recommendations
論文目次 中文摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-3 研究目的 2
1-4 研究架構 2
二、 文獻探討 4
2-1 人格特質 4
2-2 主色概念 7
2-3 電影喜好與大五人格 9
2-4 電影喜好與電影海報 10
2-5 相似度 11
2-6 推薦系統 13
2-7 基於記憶的協同過濾(Memory-based CF) 14
2-7-1 基於用戶的協同過濾(User-based CF) 14
2-7-2 基於物品的協同過濾(Item-based CF) 16
2-8 基於模型的協同過濾(Model-based CF) 17
2-9 多層感知器(Multi-layer Perceptron) 19
三、 研究方法 21
3-1 數據來源 23
3-2 電影海報收集 24
3-3 海報主色分析 25
3-4 用戶喜好顏色分析 27
3-5 相似度測量 28
3-6 預測初始評分 29
3-7 用戶/電影評分之平均值計算 29
3-8 多層感知器計算 30
四、 實驗結果 33
4-1 自變數 33
4-2 隱藏層元素數量分析 33
4-3 最大迭代次數分析 36
4-4 solver差異分析 38
4-5 activation差異分析 38
4-6 alpha差異分析 41
4-7 隱藏層層數分析 42
4-8 batch size差異比較 46
4-9 顏色、大五人格、電影評分與多層感知器預測比較 50
五、 結論、建議與未來方向 52
參考文獻 55
參考文獻 Azizi, S., & Ahmadloo, E. (2016). Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network. Applied Thermal Engineering, 106, 203-210.
Baumgartner, E., & Laghi, F. (2012). Affective responses to movie posters: Differences between adolescents and young adults. International journal of psychology, 47(2), 154-160.
Bayarri, S., Calvo, C., Costell, E., & Durán, L. (2001). Influence of color on perception of sweetness and fruit flavor of fruit drinks. Food science and technology international, 7(5), 399-404.
Bonnardel, N., Piolat, A., & Le Bigot, L. (2011). The impact of colour on Website appeal and users’ cognitive processes. Displays, 32(2), 69-80.
Choi, S. H. (2014). Study on minimalistic expression in movie posters on the intention to watch the films : focusing on the overseas movie posters produced after 2010 Hongik University Graduate School].
Costa Jr, P. T., & McCrae, R. R. (1992a). Four ways five factors are basic. Personality and individual differences, 13(6), 653-665.
Costa Jr, P. T., & McCrae, R. R. (1992b). Revised NEO personality inventory (NEO-PI-R) and NEO five-factor (NEO-FFI) inventory professional manual. Odessa, Fl: PAR.
Disney. (2019). 怪獸電力公司. https://www.disneyplus.com/zh-hant/brand/pixar
Dutt, M. I., & Saadeh, W. (2022). A Multilayer Perceptron (MLP) Regressor Network for Monitoring the Depth of Anesthesia. 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS),
Duuren, D. (2008). The relationship between personality and preference for either arthouse or mainstream movies University of Twente].
Elliot, A. J., Maier, M. A., Moller, A. C., Friedman, R., & Meinhardt, J. (2007). Color and psychological functioning: the effect of red on performance attainment. Journal of experimental psychology: General, 136(1), 154.
Emamzadeh, E. S. S., Soltani, J., Mashal, M., Kalanaki, M., & Asadolahzadeh, T. (2016). Performance evaluation of MLP and RBF neural networks to estimate the soil saturated hydraulic conductivity. Modern Applied Science, 11(3), 1.
Ersonality, P. (2010). Assessing The Impact Of Gender And Personality On Film Preferences.
Fraj, E., & Martinez, E. (2006). Influence of personality on ecological consumer behaviour. Journal of Consumer Behaviour: An International Research Review, 5(3), 167-181.
Frank, C. A., Nelson, R. G., Simonne, E. H., Behe, B. K., & Simonne, A. H. (2001). Consumer preferences for color, price, and vitamin C content of bell peppers. HortScience, 36(4), 795-800.
Furnham, A. (2008). Personality and intelligence at work: Exploring and explaining individual differences at work.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
Goldberg, L. R. (1993). The structure of phenotypic personality traits. American psychologist, 48(1), 26.
Gorn, G. J., Chattopadhyay, A., Yi, T., & Dahl, D. W. (1997). Effects of color as an executional cue in advertising: They′re in the shade. Management science, 43(10), 1387-1400.
Gosling, S., Rentfrow, P., & Potter, J. (2014). Norms for the ten item personality inventory. Unpublished data.
Gosling, S. D., Rentfrow, P. J., & Swann Jr, W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in personality, 37(6), 504-528.
Hsieh, Y.-C., Chiu, H.-C., Tang, Y.-C., & Lee, M. (2018). Do colors change realities in online shopping? Journal of interactive marketing, 41(1), 14-27.
Jain, R., Nayyar, A., Arora, S., & Gupta, A. (2021). A comprehensive analysis and prediction of earthquake magnitude based on position and depth parameters using machine and deep learning models. Multimedia Tools and Applications, 80(18), 28419-28438.
Jin, J., & Chen, Q. (2012). A trust-based Top-K recommender system using social tagging network. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery,
Kaya, N., & Epps, H. H. (2004). Relationship between color and emotion: A study of college students. College student journal, 38(3), 396-405.
Kyung-ah, L. (2010). Effects of Color Images in Cinema Posters on Purchase Intention of the Film Audience : Centering on Melodrama and Comedy Genres Chosen from among Top 20 most sold films during 1999 to 2008 Hongik University Graduate School].
Li, Y., Hu, J., Zhai, C., & Chen, Y. (2010). Improving one-class collaborative filtering by incorporating rich user information. Proceedings of the 19th ACM international conference on Information and knowledge management,
Maqbool, J., Aggarwal, P., Kaur, R., Mittal, A., & Ganaie, I. A. (2023). Stock Prediction by Integrating Sentiment Scores of Financial News and MLP-Regressor: A Machine Learning Approach. Procedia Computer Science, 218, 1067-1078.
MovieLens. (2016). MovieLens Dataset. https://grouplens.org/datasets/movielens/
Nation, P. (2023). The Psychology of Colors in Marketing: How They Influence What We Buy. https://persuasion-nation.com/the-psychology-of-colors-in-marketing-how-they-influence-what-we-buy/
Nitse, P. S., Parker, K. R., Krumwiede, D., & Ottaway, T. (2004). The impact of color in the e‐commerce marketing of fashions: an exploratory study. European Journal of Marketing, 38(7), 898-915.
Peponi, A., Morgado, P., & Trindade, J. (2019). Combining artificial neural networks and GIS fundamentals for coastal erosion prediction modeling. Sustainability, 11(4), 975.
Quintelier, E. (2014). The influence of the Big 5 personality traits on young people’s political consumer behavior. Young Consumers.
Rentfrow, P. J., Goldberg, L. R., & Zilca, R. (2011). Listening, watching, and reading: The structure and correlates of entertainment preferences. Journal of personality, 79(2), 223-258.
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Romans, A. (2015). We are what we watch: Film preferences and personality correlates.
Sahlins, M. (1976). Colors and cultures.
scikit-learn. (2007). sklearn.neural_network.MLPRegressor. https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
Serin, F., Alisan, Y., & Erturkler, M. (2022). Predicting bus travel time using machine learning methods with three-layer architecture. Measurement, 198, 111403.
Singh, S. (2006). Impact of color on marketing. Management decision.
Sofi, S. A., & Najar, S. A. (2018). Impact of personality influencers on psychological paradigms: An empirical-discourse of big five framework and impulsive buying behaviour. European Research on Management and Business Economics, 24(2), 71-81.
Weaver III, J. B. (1991). Exploring the links between personality and media preferences. Personality and individual differences, 12(12), 1293-1299.
Weaver III, J. B., Brosius, H.-B., & Mundorf, N. (1993). Personality and movie preferences: A comparison of American and German audiences. Personality and individual differences, 14(2), 307-315.
Wee, W. (2011). How do Colors Affect Purchases. https://www.techinasia.com/color-and-design-in-purchase-behavior
Wikipedia. (2005). Revised NEO Personality Inventory. https://en.wikipedia.org/wiki/Revised_NEO_Personality_Inventory
Wikipedia. (2010). Color psychology. https://en.wikipedia.org/w/index.php?oldid=1053845327
Zahraee, S., Assadi, M. K., & Saidur, R. (2016). Application of artificial intelligence methods for hybrid energy system optimization. Renewable and sustainable energy reviews, 66, 617-630.
王成業(2022)。探討人格特質對咖啡喜好影響之研究[未出版之碩士論文]。國立中央大學。
王珮琳(2017)。人格特質對工作與生活衝突之影響---疆界彈性中介影響與社會支持調節作用之探討[未出版之碩士論文]。國立中正大學。
呂佩璇(2021)。以工作壓力為中介變項探討國小特殊教育教師人格特質對幸福感的影響[未出版之碩士論文]。國立臺灣師範大學。
林恩妤(2022)。改良式心智圖對大學生創造力人格特質與問題解決態度之影響[未出版之碩士論文]。臺北市立大學。
梁皖茵(2022)。探討AR濾鏡與人格特質在線上互動過程中對社交情緒的影響[未出版之碩士論文]。國立陽明交通大學。
莊佳人(2022)。領導風格對工作績效的影響性之研究—組織承諾的中介效用及人格特質的調節效用[未出版之碩士論文]。國立高雄師範大學。
陳宏宇(2007)。使用MLP與韻律模型之聲調辨認[未出版之碩士論文]。國立交通大學。
曾鼎翰(2022)。人格特質、內外在動機 對人工智慧相關知識學習意願之影響[未出版之碩士論文]。國立彰化師範大學。
楊昇翰(2004)。電腦態度、知識結構及人格特質對工作績效之影響[未出版之碩士論文]。國立嘉義大學。
劉濠誠(2022)。飛機修護人員人格特質對工作績效之影響-以空軍某機修單位修護人員為例[未出版之碩士論文]。美和科技大學。
蔣宜軒(2021)。消費者人格特質對電動機車購買意願之影響 -以產品涉入為中介變數[未出版之碩士論文]。國立高雄科技大學。
鄭勝泰(2002)。人格特質對工作績效影響之探討─以某運輸服務業之T公司為例[未出版之碩士論文]。國立中央大學。
謝佩如. (2021). 換個顏色,就讓Google多賺57億!世界頂尖品牌如何靠「顏色」越賺越多?. 商業週刊. https://www.businessweekly.com.tw/management/blog/3006009
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明