博碩士論文 93522035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.32.221
姓名 楊羽斯(Yu-Szu Yang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 建立在調適性動態載入多重解析度地形 的飛行模擬
(Flight Simulation with Adaptive Dynamic LoadingMultiresolution Terrain Visualization )
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,我們結合了多重解析度地形模塑、視點相關展示及動態載入等技術做飛行模擬應用。以多重解析度的技術來展示地形模型的意義是在增進視覺效果而不減少視覺品質的要求下,讓每個地形區塊各自擁有變動的解析度,而且解析度會自動根據螢幕空間誤差 (screen space error) 作調整。一般來說,把一大塊地形模型載入到記憶體做展示是不切實際的。因此,我們將大區域地形模型切割成許多矩形小地塊,並且動態地載入所需的小地塊到記憶體中展示;而且每個地形區塊都有視點相關多重解析度模塑 (view-dependent multiresolution modeling) 的功能。
在飛行模擬的應用中,飛行器可能會靠近或遠離地形模型,而視野範圍也就跟著改變。為了進一步增進視覺效能及品質,我們讓地形區塊數量可以隨著視點高度自動改變。然而,在只有一個處理器的電腦上執行飛行模擬時,當載入地形區塊時,飛行瀏覽常會被暫停。為了消除這個現象,我們依據最近的飛行方向來預測飛行路徑,然後利用處理器執行的空檔預先載入可能需要的地形區塊。除了展示地形,地面上有許多建築物,我們以離散多重解析度模塑技術來塑造建築物,以提升展示的速度並增加場景的真實性。
摘要(英) Terrain scenery visualization is the key topic of this study. In a practical terrain visualization system, the amount of terrain data is always huge. In such a case, it is generally impractical to load the whole terrain model into the main memory. So, we need to partition a large terrain model into small blocks and then dynamically load the necessary terrain blocks into the memory for rendering. To improve the visualization performance without reducing the visual quality, every terrain block has its own variant resolutions and the variable resolution is automatically adapted based on the screen-space error. That is, every terrain block possesses the view-dependent multiresolution modeling function. In addition to the terrain models, many buildings are constructions and also included in the scenery. To improve the rendering performance, the buildings and constructions are also built as multiresolution style. Moreover, we add the prediction of flying path for increasing the visual efficiency and the quality of the terrain scenery for the application of flight simulation.
Google Earth is an excellent commercial multiresolution terrain visualization system. Google Earth has been extended to combine daily information of living. We have all similar techniques as Google Earth. In the future, we will extend our system to browse the whole Taiwan to detailedly describe the beautiful Taiwan as Google Earth.
關鍵字(中) ★ 漸近式網格
★ 動態載入
★ 多重解析度
★ 視點相關
★ 地形展示
關鍵字(英) ★ multiresolution
★ visualization
★ terrain modeling
★ dynamic loading
★ adaptive
論文目次 Abstract ii
Contents iii
List of Figures v
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 System overview 2
1.2.1 Multiresolution modeling 2
1.2.2 Dynamic loading 2
1.2.3 Flight control interface 3
1.3 Thesis organization 3
Chapter 2 Related Works 5
2.1 Multiresolution modeling 5
2.1.1 Progressive mesh 5
2.1.2 Hierarchical face clustering 7
2.1.3 Feature preservation in multiresolution meshes 11
2.2 View-dependent modeling 14
2.2.1 View-dependent progressive mesh 14
2.2.2 Screen-space error 14
Chapter 3 Dynamic Loading 18
3.1 Dynamic loading management 18
3.2 The adaptation of terrain blocks 22
3.3 Prediction of flying path 23
3.3.1 Flying path 24
3.3.2 Formula of predict 24
3.4 Multiresolution buildings 28
Chapter 4 Flight Simulation Interface 29
4.1 Graphical environment 29
4.1.1 Graphic environment 29
4.1.2 Realistic virtual scene 33
4.2 Flight control 35
4.2.1 Flight stick, rudder pedal, and throttle 35
4.2.2 Quaternion 38
Chapter 5 Experiments 45
5.1 The adaptation of terrain blocks 45
5.1.1 The same angle with different height 45
5.1.2 The same height with different angle 47
5.2 Prediction of flying path 49
5.3 Flight simulation interface 50
Chapter 6 Conclusions 53
References 54
參考文獻 [1] Chang, J.-H., Adaptive Multiresolution Terrain Modeling and Dynamic-loading for Flight Simulation, Master’s thesis, Inst. of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 2002.
[2] Cohen, J., A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright, “Simplification envelops,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.119-128.
[3] Duchaineau, M., M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein, “ROAMing terrain: real-time optimally adapting meshes,” in Proc. Visualization’97, Phoenix, AZ, Oct.19-24, 1997, pp.81-88.
[4] Erikson, C., Polygonal Simplification: An Overview, Tech. Report of Dept. Com. Sci., Univ. North Carolina at Chapel Hill, TR96-016, 1996.
[5] Erikson, C. and D. Manocha, Simplification Culling of Static and Dynamic Scene Graphs, Tech. Report 98-009, Computer Science Dept., University of North Carolina, Chapel Hill, 1998.
[6] Garland, M. and P. S. Heckbert, “Multiresolution modeling for fast rendering,” in Proc. Graphics Interface’94, Banff, Alberta, Canada, May, 1994, pp.43-50.
[7] Garland, M. and P. S. Heckbert, Fast Polygonal Approximation of Terrain and Height Fields, Tech. Report CMU-CS-95-181, Carnegie Mellon Univ., School of Computer Science, Sep. 1995.
[8] Garland, M. and P. S. Heckbert, “Surface simplification using quadric error metrics,” in Proc. SIGGRAPH`97, Los Angeles, CA, Aug.3-8, 1997, pp.209-216.
[9] Garland, M., A. Willmott, and P. Heckbert. “Hierarchical face clustering on polygonal surfaces,” in Proc. of ACM Sym. on Interactive 3D Graphics, Mar. 2001.
[10] Grabner, M., “Feature preservation in view-dependent multiresolution meshes,” in Proc. of Spring Conf. on Computer Graphics, Budmerice, Slovakia, 2002, pp.153-162.
[11] Hoppe, H., T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh optimization,” in Proc. SIGGRAPH’93, Anaheim, CA, Aug.1-6, 1993, pp.19-26.
[12] Hoppe, H., “Progressive meshes,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.99-108.
[13] Hoppe, H., “View-dependent refinement of progressive meshes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.189-198.
[14] Hoppe, H., “Progressive simplicial complexes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.217-224.
[15] Hoppe, H., Efficient Implementation of Progressive Meshes, Tech. Report of Microsoft Research, Microsoft Corporation, MSR-TR-98-02, Jan. 1998.
[16] Hoppe, H., “Smooth view-dependent level-of-detail control and its application to terrain rendering,” in Proc. IEEE Visualization’98, Research Triangle Park, NC, Oct.18-23, 1998, pp.35-42.
[17] Huang, C.-C., View-dependent Progressive-mesh Terrain Browsing with Dynamic Loading, Master’s thesis, Inst. of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 1999.
[18] Huang, W.-K., A Tactical Simulation System with Dynamic-loading Multiresolution Terrain Modeling, Master’s thesis, Inst. of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 2001.
[19] Klein, R., “Multiresolution representations for surfaces meshes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.1-19.
[20] Klein, R., D. Cohen-Or, and T. Huttner, “Incremental view-dependent multiresolution triangulation of terrain,” in Proc. Fifth Pacific Conf. Computer Graphics & Applications, Seoul, Korea, Oct.13-16, 1997, pp.127-136.
[21] Lee, Y., -L., Adaptive Dynamic Loading with Multiresolution Terrain Visualization, Master’s thesis, Inst. Of Computer Science andInformation Engineering, National Central University, Chung-li, Taiwan, 2005.
[22] Lindstrom, P., D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner, “Real-time, continuous level of detail rendering of height fields,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.109-118.
[23] Liu, S.-C., View-dependent Multiresolution Modeling with Appearance Attributes Using Quadric Error Metrics, Master’s thesis, Inst. of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 2001.
[24] Luebke, D. and C. Erikson., “View-dependent simplification of arbitrary polygonal environments,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.199-208.
[25] Murray, G. Rotation About an Arbitrary Axis in 3 Dimensions, Colorado School of Mines, USA, 2005.
[26] Rossignac, J., and P. Borrel, “Multiresolution 3D approximations for rendering complex scenes,” in Geometric Modeling in Computer Graphics: Methods and Applications, Springer Verlag, 1993, pp.455-465.
[27] Samet, H., “The quadtree and related hierarchical data structures,” ACM Computing Surveys, vol.16, no.2, pp.187-260, 1984.
[28] Schroeder, W. J., J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” in Proc. SIGGRAPH’92, vol.26, no.2, Chicago, IL, Jul.26-31, 1992, pp.65-70.
[29] Soucy, M. and D. Laurendeau, “Multiresolution surface modeling based on hierarchical triangolation,” Computer Vision and Understanding, Vol.63, No.1, pp.1-14, 1996.
[30] Turk, G., “Re-tiling polygonal surfaces,” in Proc. SIGGRAPH’92, vol. 26, no.2, Chicago, IL, Jul.26-31, 1992, pp.55-64.
[31] Xia, J. C., J. Ei-Sana, and A. Varshney, “Adaptive real-time level-of-detail-based rendering for polygonal models,” IEEE Trans. on Visualization and Computer Graphics, vol.3, no.2, pp.171-183, 1997.
[32] Yang, T.-S., Dynamic-loading Multiresolution Terrain Modeling in A Flight Simulation System, Master’s thesis, Inst. of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 2000.
[33] Zhao, Y., J. Zhou, J.-Y. Shi, and Z.-G. Pan, “A fast algorithm for large scale terrain walkthrough,” in Proc. CAD/Graphics, Kunming, China, Aug.22-24, 2001, pp.123-126.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明