博碩士論文 110327025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.136.17.89
姓名 劉亞綸(Ya-Lun Liu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 低電流密度下極化效應對微型LED內部量子效率影響之研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ Modified Hartmann mask於氣體折射率 量測之應用
★ 側聚光型太陽能電池系統之聚光元件設計與製作★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用
★ 波前檢測應用於氣體折射率量測★ 多重曲率之聚光元件應用於聚光型太陽能電池系統
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-19以後開放)
摘要(中) 本研究探討半極性晶向之單量子井(single quantum well, SQW) 藍光微發光二極體(µ-LED)於低電流密度下之光電特性。藉由模擬分析,探討8種晶向與不同QW厚度對內部量子效率(internal quantum efficiency, IQE)與正向電壓之影響。模擬結果發現pn-接面之內建電場與反向極化導致之電場在低電流密度下對IQE與正向電壓有顯著的影響。由能帶圖的分析顯示非極性發光二極體因內建電場導致的能帶傾斜而並非擁有最高的IQE與最大允許厚度。另外,反向極化會增加與內建電場同向之能帶傾斜,故較於接近非極性之(11-22)微發光二極體於較大QW厚度有較差的IQE。但反向極化也會減少電洞能障高度,故可在同電流密度下有更低的正向電壓。最後發現低電流密度下,於本文討論之8種晶向中,弱正向極化(10-12)微發光二極體有最高IQE與最大允許厚度,這源於弱正向極化之電場與內建電場間的平衡,使其擁有最平整的能帶。
摘要(英) This study investigates the optoelectronic properties of blue micro-light-emitting diodes (µ-LED) based on the semipolar single quantum well (SQW) at low current density. Through simulation analysis, the influences of eight crystal orientations and different QW thicknesses on internal quantum efficiency (IQE) and forward voltage are investigated. The simulation results show that, at low current density, the built-in electric field of the p–n junction and the electric field caused by reversed polarization have a significant effect on the IQE and forward voltage. Analysis of the energy band diagram shows that non-polar LEDs do not exhibit the highest IQE and maximum allowed thickness, owing to the energy band tilt caused by the built-in electric field. Additionally, reversed polarization increases band tilt in the same direction as the built-in electric field, resulting in poorer IQE compared to non-polar LEDs. However, reversed polarization also reduces hole barrier height, resulting in lower forward voltage at the same current density. Finally, it is found that weakly positive-polarized (10-12) LEDs have the highest IQE and maximum allowed thickness at low current density, which is due to the flat energy band with reduced band tilt caused by weakly positive polarization.
關鍵字(中) ★ 半極性晶向
★ 發光二極體
★ 內部量子效率
★ 微發光二極體
★ 單量子井
★ 低電流密度
關鍵字(英) ★ semi-polar orientation
★ LEDs
★ internal quantum efficiency
★ micro-LEDs
★ single quantum well
★ low current density
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 ix
第一章、緒論 1
2-1 研究背景 1
2-2 研究動機 2
2-2-1 纖鋅礦結構GaN之極化效應 2
2-2-2 微發光二極體(Micro-LED, μ-LED)於顯示器應用之工作條件 6
2-3 研究目的 7
2-4 論文架構 7
第二章、基礎理論與原理 9
3-1 帕松方程與載子傳輸 9
3-2 載子之產生與復合模型 10
3-2-1 蕭特基-瑞德-霍爾復合 11
3-2-2 歐傑復合 11
3-2-3 自發輻射 12
3-2-4 內部量子效率 14
3-3 極化計算 14
第三章、模擬設計與架構 20
4-1 模擬設計 20
4-2 SQW μ-LED結構之設計 21
4-3 SQW μ-LED材料參數之設定 22
4-3-1 能隙(Band gap) 23
4-3-2 有效能態密度(Effective density of states)函數之計算 23
4-3-3 能帶偏移計算 25
4-3-4 載子遷移率 26
4-3-5 相對介電常數 28
4-4 SQW μ-LED半導體物理之設定 29
4-4-1 載子復合 29
4-4-2 極化 29
第四章、模擬結果與討論 31
5-1 總極化之計算與文獻比較 31
5-2 半極性微發光二極體之電流-電壓特性 33
5-3 極性、半極性、非極性、反向極性之能帶圖 34
5-4 不同半極性晶向與厚度之比較 35
第五章、結論與未來展望 45
6-1 結論 45
6-2 未來展望 46
參考文獻 48
附錄 56
參考文獻 [1] H. D. Jabbar, M. A. Fakhri, and M. J. AbdulRazzaq, "Gallium nitride–based photodiode: a review," Materials Today: Proceedings, vol. 42, pp. 2829-2834, 2021.
[2] J. Wu, "When group-III nitrides go infrared: New properties and perspectives," Journal of applied physics, vol. 106, no. 1, p. 5, 2009, doi: https://doi.org/10.1063/1.3155798.
[3] J. Verma, A. Verma, V. Protasenko et al., "Nitride LEDs based on quantum wells and quantum dots," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2014, ch. 11, pp. 368-408.
[4] J. D. Simon, "Polarization-engineered III-V nitride heterostructure devices by molecular beam epitaxy," University of Notre Dame, 2009.
[5] Y.-R. Wu, C.-Y. Huang, Y. Zhao et al., "Nonpolar and semipolar LEDs," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 8, pp. 273-295.
[6] J.-H. Ryou and W. Lee, "GaN on sapphire substrates for visible light-emitting diodes," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 3, pp. 43-78.
[7] Y. Zhao, H. Fu, G. T. Wang et al., "Toward ultimate efficiency: Progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes," Advances in Optics and Photonics, vol. 10, no. 1, pp. 246-308, 2018, doi: https://doi.org/10.1364/AOP.10.000246.
[8] H. Fu and Y. Zhao, "Efficiency droop in GaInN/GaN LEDs," in Nitride semiconductor light-emitting diodes (LEDs), J.-J. Huang, H.-C. Kuo, and S.-C. Shen Eds.: Elsevier, 2018, ch. 9, pp. 299-325.
[9] S. Jin, J. Li, J. Li et al., "GaN microdisk light emitting diodes," Applied Physics Letters, vol. 76, no. 5, pp. 631-633, 2000.
[10] H. Jiang, S. Jin, J. Li et al., "III-nitride blue microdisplays," Applied Physics Letters, vol. 78, no. 9, pp. 1303-1305, 2001.
[11] S. Lu, J. Li, K. Huang et al., "Designs of InGaN micro-LED structure for improving quantum efficiency at low current density," Nanoscale Research Letters, vol. 16, no. 1, p. 99, 2021, doi: https://doi.org/10.1186/s11671-021-03557-4.
[12] T. Wu, C.-W. Sher, Y. Lin et al., "Mini-LED and micro-LED: promising candidates for the next generation display technology," Applied Sciences, vol. 8, no. 9, p. 1557, 2018.
[13] J. Piprek, "How to decide between competing efficiency droop models for GaN-based light-emitting diodes," Applied Physics Letters, vol. 107, no. 3, p. 031101, 2015.
[14] X. Jia, Y. Zhou, B. Liu et al., "A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications," Materials Research Express, vol. 6, no. 10, p. 105915, 2019, doi: https://doi.org/10.1088/2053-1591/ab3f7b.
[15] D. L. Becerra, Y. Zhao, S. H. Oh et al., "High-power low-droop violet semipolar (30-3-1) InGaN/GaN light-emitting diodes with thick active layer design," Applied Physics Letters, vol. 105, no. 17, p. 171106, 2014, doi: https://doi.org/10.1063/1.4900793.
[16] webpage from: COMSOL https://doc.comsol.com/6.1/docserver/#!REF:%252Fcom.comsol.help.semicond%252Ftoc.xml:RES:res_toc_-595578872.html
[17] J. Piprek, "Efficiency models for GaN-based light-emitting diodes: Status and challenges," Materials, vol. 13, no. 22, p. 5174, 2020.
[18] J. Piprek, Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers, Vol. 1. CRC Press, 2017.
[19] J. Piprek, Nitride semiconductor devices: principles and simulation. John Wiley & Sons, 2007.
[20] A. Romanov, T. Baker, S. Nakamura et al., "Strain-induced polarization in wurtzite III-nitride semipolar layers," Journal of Applied Physics, vol. 100, no. 2, p. 023522, 2006, doi: https://doi.org/10.1063/1.2218385.
[21] S. Schulz and O. Marquardt, "Electronic Structure of Polar and Semipolar (11 2¯ 2)-Oriented Nitride Dot-in-a-Well Systems," Physical Review Applied, vol. 3, no. 6, p. 064020, 2015.
[22] K.-Y. Cheng, III–V Compound Semiconductors and Devices. Springer, 2020.
[23] S. Roy, S. T. Ahsan, A. H. Howlader et al., "Comparative investigation into polarization field-dependent internal quantum efficiency of semipolar InGaN green light-emitting diodes: A strategy to mitigate green gap phenomenon," Materials Today Communications, vol. 31, p. 103705, 2022, doi: https://doi.org/10.1016/j.mtcomm.2022.103705.
[24] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva et al., "Carrier mobility model for GaN," Solid-State Electronics, vol. 47, no. 1, pp. 111-115, 2003, doi: https://doi.org/10.1016/S0038-1101(02)00256-3.
[25] I. Vurgaftman and J. n. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics, vol. 94, no. 6, pp. 3675-3696, 2003.
[26] M. A. Caro, S. Schulz, and E. P. O’Reilly, "Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides," Physical Review B, vol. 88, no. 21, p. 214103, 2013, doi: http://dx.doi.org/10.1103/PhysRevB.88.214103.
[27] A. N. Donald, Semi-Conductor Physics & Devices. Tata McGraw Hill Education Private Limited, 2006.
[28] P. Rinke, M. Winkelnkemper, A. Qteish et al., "Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN," Physical Review B, vol. 77, no. 7, p. 075202, 2008, doi: http://dx.doi.org/10.1103/PhysRevB.77.075202.
[29] J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013.
[30] 盧廷昌, 半導體雷射導論. 五南, 2008.
[31] V. Brudnyi, "BN, AlN, GaN, InN: charge neutrality level, surface, interfaces, doping," Russian Physics Journal, vol. 59, pp. 2186-2190, 2017.
[32] J. Cho, E. F. Schubert, and J. K. Kim, "Efficiency droop in light‐emitting diodes: Challenges and countermeasures," Laser & Photonics Reviews, vol. 7, no. 3, pp. 408-421, 2013, doi: https://doi.org/10.1002/lpor.201200025.
[33] F. Schwierz, "An electron mobility model for wurtzite GaN," Solid-state electronics, vol. 49, no. 6, pp. 889-895, 2005, doi: https://doi.org/10.1016/j.sse.2005.03.006.
[34] R. Saroosh, T. Tauqeer, S. Afzal et al., "Performance enhancement of AlGaN/InGaN MQW LED with GaN/InGaN superlattice structure," IET Optoelectronics, vol. 11, no. 4, pp. 156-162, 2017, doi: https://doi.org/10.1049/iet-opt.2016.0141.
[35] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. John Wiley & Sons, 2009.
[36] S. Khatsevich and D. Rich, "The effects of crystallographic orientation and strain on the properties of excitonic emission from wurtzite InGaN/GaN quantum wells," Journal of Physics: Condensed Matter, vol. 20, no. 21, p. 215223, 2008, doi: https://doi.org/10.1088/0953-8984/20/21/215223.
[37] J. Piprek, R. Farrell, S. DenBaars et al., "Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers," presented at the IEEE photonics technology letters, 2005.
[38] M. Caro, S. Schulz, and E. O’Reilly, "Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides," Physical Review B, vol. 86, no. 1, p. 014117, 2012, doi: https://doi.org/10.1103/PhysRevB.86.014117.
[39] A. Strittmatter, J. E. Northrup, N. M. Johnson et al., "Semi‐polar nitride surfaces and heterostructures," physica status solidi (b), vol. 248, no. 3, pp. 561-573, 2011, doi: https://doi.org/10.1002/pssb.201046422.
[40] C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs," presented at the IEEE transactions on electron devices, 2011.
[41] Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu et al., "Influence of polarity on carrier transport in semipolar (20-2-1) and (20-21) multiple-quantum-well light-emitting diodes," Applied Physics Letters, vol. 100, no. 23, p. 231110, 2012, doi: https://doi.org/10.1063/1.4726106.
[42] F. Akyol, D. Nath, S. Krishnamoorthy et al., "Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes," Applied Physics Letters, vol. 100, no. 11, p. 111118, 2012, doi: https://doi.org/10.1063/1.3694967.
[43] U. T. Schwarz, H. Braun, K. Kojima et al., "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Applied Physics Letters, vol. 91, no. 12, p. 123503, 2007, doi: https://doi.org/10.1063/1.2786602.
[44] H. Li, H. Zhang, J. Song et al., "Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers," Applied Physics Reviews, vol. 7, no. 4, 2020, doi: https://doi.org/10.1063/5.0024236.
[45] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, "Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses," presented at the IEEE Journal of selected topics in quantum electronics, 2009.
[46] M. Tian, H. Yu, M. H. Memon et al., "Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall," Optics Letters, vol. 46, no. 19, pp. 4809-4812, 2021.
[47] J.-I. Shim and D.-S. Shin, "Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization," Nanophotonics, vol. 7, no. 10, pp. 1601-1615, 2018.
指導教授 韋安琪(An-Chi Wei) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明