博碩士論文 110327017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.118.162.193
姓名 王聖翔(Sheng-Hsiang Wang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用電洞加速層低電流密度下增益Micro-LED之內部量子效率
(Improvement of the internal quantum efficiency of III-Nitride blue Micro-LEDs by the hole accelerator at low current density)
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ Modified Hartmann mask於氣體折射率 量測之應用
★ 側聚光型太陽能電池系統之聚光元件設計與製作★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用
★ 波前檢測應用於氣體折射率量測★ 多重曲率之聚光元件應用於聚光型太陽能電池系統
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-15以後開放)
摘要(中) 隨著微型發光二極體尺寸的減小,磊晶過程中產生之缺陷變得更加嚴重。這些缺陷導致載流子產生表面復合,導致載子無法復合於主動層。為了增強電洞注入效果,此研究加入了各種電洞加速層(Hole Accelerator),此層提供額外動能使電洞穿過 p型電子阻擋層 (p-EBL),使更多電洞進入多重量子井(Multiple Quantum Wells )與電子復合,從而使微發光二極體之內部量子效率提升。本研究使用COMSOL商業多重物理量模擬軟體之半導體模組來模擬元件之特性。通過增添電洞加速層,藉由材料於異質接面造成之極化電場,使元件內電洞速度提升,防止它們被困在缺陷能級中。此外,研究不同量子壁壘(Quantum barrier)之材料以提高低電流密度下微發光二極體之內部量子效率。
摘要(英) As the size of micro light-emitting diodes (μ-LEDs) decreases, the defects generated during the epitaxial growth process become more severe. These defects lead to surface recombination of charge carriers, preventing their recombination within the active layer. In order to enhance hole injection efficiency, this study introduces various hole accelerators, which provide additional kinetic energy to the holes to traverse the p-type Electron Blocking Layer (p-EBL). This enables more holes to enter the Multiple Quantum Wells (MQWs) and recombine with electrons, thereby improving the internal quantum efficiency of the μ-LEDs. The commercial multiphysics simulation software COMSOL′s semiconductor module is utilized to simulate the characteristics of the device. By incorporating hole accelerators, the polarization electric field induced at the heterojunction enhances the hole velocity within the device, preventing them from being trapped in defect energy levels. Additionally, different materials for the quantum barriers are studied to improve the internal quantum efficiency of the micro-LED at low current densities.
關鍵字(中) ★ 微發光二極體
★ 電洞加速層
★ 量子壁壘材料
★ 提升內部量子效率
關鍵字(英) ★ μ-LEDs
★ hole accelerator
★ Quantum barrier material
★ Improve quantum efficiency
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章、緒論 1
1-1 前言 1
1-2 文獻探討 4
1-3 研究動機 13
1-4 論文研究架構 14
第二章、基礎理論與原理 15
2-1 能帶結構 15
2-1-1 能階與能帶 16
2-1-2 狀態密度函數 19
2-2 載子濃度計算 20
2-3 發光二極體 22
2-3-1 發光二極體材料 22
2-3-2 發光二極體發光原理 23
2-3-3 發光二極體復合方式 24
2-3-4 發光二極體量子效率 27
2-4 電洞加速層 29
2-5 小結 30
第三章、模擬設計與架構 31
3-1 Micro-LED半導體模擬研究方法 31
3-2 Micro-LED 模擬模型介紹及材料說明 32
3-3 邊界條件設定 40
3-4 半導體模擬主導公式 42
3-5 小結 44
第四章、模擬結果與討論 45
4-1 半導體模型驗證 45
4-2 電洞加速層於微發光二極體 46
4-3 低電流密度下提升內部量子效率 57
4-4 小節 62
第五章、結論與未來展望 63
5-1 結論 63
5-2 未來展望 64
6 參考文獻 65
參考文獻 [1] Web page from : ledinside
https://www.ledinside.com.tw/news/20170110-33644.html
[2] Web page from : ledinside
https://www.ledinside.com.tw/news/20190107-35833.html
[3] Web page from : LEDinside
https://www.ledinside.cn/news/20220209-51664.html
[4] L. Li, C. Liu, Y. Su, J. Bai, J. Wu, Y. Han, Y. Hou, S. Qi, Y. Zhao, H. Ding, Y. Yan, L. Yin, P. Wang, Y. Luo and X. Sheng , “Heterogeneous Integration of Microscale GaN Light-Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates,” Advanced Materials Technologies,3, 1700239, 2018
[5] X. Jia, Y. Zhou, B. Liu, H. Lau, Z. Xie, R. Zhang and Y. Zheng, “A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications,” Materials Research Express, Express 6, 105915, 2019
[6] S. Lu, J. Li, K. Huang, G. Liu, Y. Zhou, D. Cai, R. Zang and J. Kang, “Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density,” Nanoscale Research Letters volume 16, 99, 2021

[7] L. Chang, Y. Yeh, S. Hang, K. Tian, J. Kou, W. Bi, Y. Zhang, Z. Zhang, Z. Liu and H. Kuo, “Alternative Strategy to Reduce Surface Recombination for InGaN/GaN Micro-light-Emitting Diodes—Thinning the Quantum Barriers to Manage the Current Spreading,” Nanoscale Research Letters, volume 15, 160, 2020
[8] M. Zhang, S. Hang, C. Chu, H. Shao, Y. Zhang, Y. Zhang, Y. Zhang, Q. Zheng, Q. Li and Z. Zhang, “A Buried High k Insulator for Suppressing the Surface Recombination for GaN-Based Micro-Light-Emitting Diodes,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 69, NO. 6, 2022
[9] Z. Zhang, W. Liu, S. Tan, Y. Ji, L. Wang, B. Zhu, Y. Zhang, S. Lu, X. Zhang, N. Hasanov, X. Sun and V. Demir, “A hole accelerator for InGaN/GaN light emitting diodes,” Appl. Phys. Lett, 105, 153503,2014
[10] Z. Zhang, Y. Zang, W. Bi, C. Geng, S. Xu, H. Demir and X. Sun, “On the hole accelerator for III-nitride light-emitting diodes,” Appl. Phys. Lett, 108, 151105, 2016
[11] M. Wong, C. Lee, D. Myers, D. Hwang, J. Kearns, T. Li, J. Speck, S. Nakamura and S. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004, 2019


[12] Web page from : StackExchange electrical engineering
https://electronics.stackexchange.com/questions/83657/e-k-diagram-in-case-of- semiconductors
[13] Web page from : Introduction to III and V semiconductors
https://scistore.colife.org.tw/management/Upload/dragon/20161211153312939_07_sund ay_20161211.pdf
[14] Donald A. Neamen, Fundamentals of Semiconductor Physics and Devices, 楊賜麟, McGraw-Hill, USA, 2005
[15] Y. Tawk, J. Costantine, S. Hemmady, G. Balakrishnan, K. Avery and C.Christodoulou, “Demonstration of a Cognitive Radio Front End Using an Optically Pumped Reconfigurable Antenna System (OPRAS),” IEEE Transactions on Antennas and Propagation, Volume: 60, Issue: 2, February 2012
[16] Web page from : WIKIPEDIA
https://en.wikipedia.org/wiki/P%E2%80%93n_junctio
[17] J. Park, D. Kim, S. Hwang, D. Meyaard, E. Schubert, Y. Han, J. Choi, J. Cho and J. Kim, “Enhanced overall efficiency of GaInN-based light-emittingdiodes with reduced efficiency droop by Al-compositiongraded AlGaN/GaN superlattice electron blocking layer,” Appl. Phys. Lett., 103, 061104, 2013

[18] H. Qin, T. Kuang, X. Luan, W. Li, J. Xiao, P. Zhang, D. Yang and G. Zhang, “Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals,” Crystals, 8, 428, 2018
[19] C.M. Furqan, J. Ho and H. Kwok, “GaN thin film: Growth and Characterizations by Magnetron Sputtering,” Surfaces and Interfaces, 26, 101364, 2021
[20] V. DAVYDOV, A. Klochikhin, D. Kurdyukov, S. Ivanov, V. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Gaul, A. Mudryi, H, Harima, A. Hashimoto, A. Yamamoto and E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” phys. stat. sol. (b) , 234, No.3, 787-795, 2002
[21] N. Neptal, K. Nam, M. Nakarmi, J. Lin and H. Jiang, “Optical properties of the nitrogen vacancy in AlN epilayers,” Appl. Phys. Lett. 84, 1090–1092, 2004
[22] A. Kashyout, M. Fathy, S. Gad, Y. Badr and A. Bishara, “Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices,” Photonics, 6(2), 44, 2019
[23] J. Hwang, W. Schaff and L. Eastman, “Si doping of high-Al-mole fraction AlxGa1ÀxN alloys with rf plasma-induced molecular-beam-epitaxy,” Appl. Phys. Lett., 81, 5192–5194, 2002
[24] N. Chowdhury, G. Fiori and T. Palacios, “GaN Nanowire n-MOSFET With 5 nm Channel Length for Applications in Digital Electronics,” IEEE Electron Device Letters, Volume: 38, Issue: 7, July 2017
[25] D. Williams, A. Andreev, E. O’Reilly and D. Faux, “Derivation of built-in polarization potentials in nitride-based semiconductor quantum dots,” Phys. Rev. B, 72, 235318, December 2005
[26] S. Konzelmann, C. Hoffmann, R. Merte and D. Peier, “Thermal and Electrical Properties of Aluminum Nitride Filled Epoxy-resin Compound,” IEEE Transactions on Dielectrics and Electrical Insulation, Volume 15, Issue 2, April 2008
[27] Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., in Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 2001, 1-30.
[28] W. Lambrecht and B. Segall, “Anomalous band-gap behavior and phase stability of c- BN-diamond alloys,” Phys. Rev. B,47, 9289-9296, 1993
[29] S. Pugh, D. Dugdale, S. Brand and R. Abram “Electronic structure calculations on nitride semiconductors,” Semiconductor Science and Technology, Volume 14, Number 1, 1999
[30] Y. Xu and W. Ching, “Electronic, optical, and structural properties of some wurtzite crystals,” Phys. Rev. B, 48, 4335, 15 August 1993
[31] S. Chae, J. Lee, K. Mengle, J. Heron and E. Kioupakis, “Rutile GeO2: An ultrawide-band-gap semiconductor with ambipolar doping,” Appl. Phys. Lett., 114, 102104, 2019


[32] G. Koley, M. G. Spencer, “Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy,” Journal of Applied Physics, 90, 337–344, 2001
[33] C. Ho, S. Chen and Y. Wu, “Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs,” Processes, 10(3), 489, 2022
[34] P. Sohi, J.Carlin and N. Grandjean, “Alloy disorder limited mobility of InGaN two-dimensional electron gas,” Appl. Phys. Lett., 112, 262101, 2018
[35] M. Coltrin, A. Baca and R. Kaplar “Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys,” ECS J. Solid State Sci. Technol., 6 S3114, 2017
[36] C. Chen, T. Huang, Y. Lin, Y. Lin, P. Wu, P. Liou, H. Hsieh, Y. Huang, S. Yang, Y. Wu and C. Yang, “Hole mobility behavior in Al-gradient polarization-induced p-type AlGaN grown on GaN template,” Appl. Phys. Lett., 120, 022103, 2022
[37] F. Bernardini and V. Fiorentini and O. Ambacher, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B, 64, 085207, 2001
[38] F. Bernardini and V. Fiorentini and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett., 80, 1204, 2002

[39] A. E. Romanov, T. Baker, S. Nakamura and J. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., 100, 023522, 2006
[40] F. Sacconi , A. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices, Volume: 48, Issue: 3, 450 – 457, 2001
[41] Hisashi Masui “Diode ideality factor in modern light-emitting diodes,” Semicond. Sci. Technol., 26 075011, 2011
[42] Q. Pham, J. Chen, H. Nguyen, “Three-Dimensional Numerical Study On the hole accelerator Efficiency Droop in InGaN/GaN Light-Emitting Diodes,” IEEE Photonics Journal, Volume: 11, Issue: 1, 2019
[43] F. Römer and B Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Optics Express, Vol. 22, Issue S6, pp. A1440-A1452, 2014
[44] Sergey Karpov, “ABC-Model for Interpretation of Internal Quantum Efficiency and Its Droop in III-Nitride LEDs: A Review,” Optical and Quantum Electronics 47(6):1293- 1303, 2015
指導教授 韋安琪(An-Chi Wei) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明