博碩士論文 109226024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.144.6.9
姓名 陳慶鴻(Ching-Hong Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 (100)矽基板上的氮化物二維電洞氣
(Nitride two-dimensional hole gas on Si (100) substrate)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第三代半導體氮化鎵生長於(111)面矽基板,因兩者晶格匹配度較高,所以可利用低溫成核層成長單晶結構,是業界常用規格,用於製造半導體功率元件、射頻元件和LED等;(100)面的矽基板,因其結構對稱特性,很適合用於製造COMS元件,然而將氮化鎵生長於(100)矽基板是相當不易的事情,因為其晶格差異(lattice mismatch)相當大,雖然已有許多實驗室透過某些方法比如基板接合法(wafer bonding)得到品質不錯的氮化鎵,但其製作過程相當繁瑣,所以簡化過程仍是大部分實驗所追求的方向。
二維電洞氣(two dimensional hole gas, 2DHG)可應用於氮化物電子元件。本實驗利用BN做為磊晶緩衝層,在Si(100)基板依序成長BN、GaN、AlGaN,並藉由霍爾量測確認電洞訊號,能帶模擬也可得到2DHG的結果。在加入AlN中間層後,拉曼量測顯示明顯的GaN訊號,但SEM表面的觀察結果是相當粗糙,若將AlN、GaN去除,直接將AlGaN成長於BN/Si(100)表面,可以得到平坦的表面、並維持2DHG結構。
摘要(英) The third-generation semiconductor GaN is generally grown on the substrate of Si(111). This is due to relatively small lattice mismatch between GaN and Si(111), comparing to the case on Si(100). GaN-on-Si is commonly used for power devices, radio frequency devices and LEDs. Si(100) substrate is very suitable for the manufacture of CMOS devices due to its mature fabrication in IC industry. However, growing GaN on Si(100) substrates is quite difficult because of the high lattice mismatch. Although GaN and Si(100) can be combined by wafer bonding, the production process is quite cumbersome. Direct growth of GaN on Si(100) can benefit the integration of GaN devices and CMOS technology.
Two dimensional hole gas (2DHG) can be used for GaN electronic devices. In this study, AlGaN/GaN was grown on a (100) silicon substrate, with BN as the nucleation layer. We confirm the 2DHG formation by Hall measurements, and the structure is verified by band diagram simulation. After adding a thin AlN layer below GaN can produce a strong Raman signal of GaN, but the surface becomes quite rough under scanning electron microscopy. It is found that removing the layers of GaN and AlN, and direct growth of AlGaN/BN on Si(100) can maintain the 2DHG structure and flat surface.
關鍵字(中) ★ (100)矽基板 關鍵字(英)
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
第一章 緒論 1
1.1 在矽基板上的氮化鎵生長 1
1.1.1 GaN on Si(111) 1
1.1.2 GaN on Si(100) 2
1.2 2DHG(two-dimensional hole gas)的形成原理:Ga-polarity與N-polarity概論 3
1.2.1 自發極化效應 4
1.2.2 壓電極化效應 5
1.2.3 二維電洞氣2DHG(two-dimensional hole gas)的形成 6
1.3 研究動機(氮化硼特性與應用) 7
1.4 章節架構 9
第二章 實驗方法、製程與儀器 10
2.1 有機金屬化學氣相沉積法 10
2.2 熱場發射掃描式電子顯微鏡 13
2.3 拉曼散射 14
2.4 霍爾量測 15
2.5 能帶模擬 17
第三章 分析與討論 19
3.1 磊晶結構 19
3.2 2DHG訊號 21
3.3 氮化鎵通道層的拉曼量測 25
3.4 結構表面形貌與氮化鎵品質 36
3.5 AlGaN/BN表面形貌 40
第四章 結論與未來展望 45
參考文獻 46
參考文獻 [1] A Dadgar, F Schulze, M Wienecke, A Gadanecz,J Bläsing, P Veit, T Hempel, A Diez, J Christen and A Krost. “Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction.” New Journal of Physics 9,389 (2007).
[2] https://www.el-cat.com/silicon-properties.htm. “Properties of silicon and silicon wafers.” EL-CAT Inc.
[3] Yuxia Feng, Xuelin Yang, Zhihong Zhang, Duan Kang, Jie Zhang, Kaihui Liu,Xinzheng Li, Jianfei Shen, Fang Liu, Tao Wang, Panfeng Ji, Fujun Xu, Ning Tang,Tongjun Yu, Xinqiang Wang, Dapeng Yu, Weikun Ge, and Bo Shen . “Epitaxy of Single-Crystalline GaN Film on CMOS-Compatible Si(100) Substrate Buffered by Graphene.” Adv. Funct. Mater. 1905056(2019).
[4] Tanakorn Wonglakhon and Dirk Zahn. “Interaction potentials for modelling GaN
precipitation and solid state polymorphism.” J. Phys.: Condens. Matter 32 205401(2020).
[5] Hadis Morkoc. Handbook of Nitride Semiconductors and Devices. (2008).
[6] H. X. Jiang and J. Y. Lin. “Hexagonal boron nitride for deep ultraviolet photonic devices.” Semicond. Sci. Technol. 29, 084003 (2014).
[7] Yasuyuki Kobayashi, Kazuhide Kumakura,Tetsuya Akasaka & Toshiki Makimoto.” Layered boron nitride as a release layer for mechanical transfer of GaN-based devices.” Nature. 484,223–227 (2012).
[8] H. Koga, Y. Nakamura, S. Watanabe and T. Yoshida. “Molecular dynamics study of deposition mechanism of cubic boron nitride.” Sci. Technol Adv.Mater. 2 349(2001).
[9] Donald A. Neamen.” Semiconductor Physics and Device:Basic Principles.” The McGraw-Hill Companies. Fourth Edition.
[10] Kexiong Zhang, Masatomo Sumiya, Meiyong Liao, Yasuo Koide & Liwen Sang. “P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.” Scientific Reports 6, 23683 (2016).
[11] Zexuan Zhang, Jimy Encomendero, Reet Chaudhuri,Yongjin Cho,Vladimir Protasenko, Kazuki Nomoto,Kevin Lee, Masato Toita,Huili Grace Xing and Debdeep Jena. “Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AlN substrates.” Appl. Phys. Lett. 119, 162104 (2021).
[12] R. Lingaparthi, N. Dharmarasu, and K. Radhakrishnan. “Origin of the two-dimensional hole gas and criteria for its existence in the III-nitride heterostructures.” Appl. Phys. Lett. 122, 172103 (2023).
[13] Uiho Choi, Donghyeop Jung, Kyeongjae Lee, Taemyung Kwak, Taehoon Jang,Yongjun Nam, Byeongchan So, and Okhyun Nam. “The Effect of AlN Buffer Layer on AlGaN/GaN/AlN Double-Heterostructure High-Electron-Mobility Transistor.” Phys. Status Solidi, 217, 1900694(2019).
[14] Chuang-Yuan Chiu. “Growth of High-Quality AlN Via Pulsed-Flow MOCVD.” Master′s thesis. National Central University. (2020).
[15] Liu Tang, Bo Tang, Hong Zhang, and Yinmei Yuan. “Review—Review of Research on AlGaN MOCVD Growth.” ECS J. Solid State Sci. Technol. 9 024009(2020).
[16] W. Liu,J. J. Zhu,D. S. Jiang,and H. Yang. “Influence of the AlN interlayer crystal quality on the strain evolution of GaN layer grown on Si(111).” Applied Physics Letters 90, 011914 (2007)
[17] Chun-Pin Huang, Muzafar Ahmad Rather, Chien-Ting Wu, Ravi Loganathan,Ying-Hao Ju, Kun-Lin Lin,Jen-Inn Chyi, and Kun-Yu Lai. “Crystal Transformation of Cubic BN Nanoisland to Rhombohedral BN Sheets on AlN for Deep-UV Light-Emitting Diodes.” ACS Appl. Nano Mater. 5285–5290(2020).
[18] Atsushi Tomita,Takumi Miyagawa,Hideki Hirayama,Yuusuke Takashima,Yoshiki Naoi&Kentaro Nagamatsu. “Investigation of V/III ratio dependencies for optimizing AlN growth during reduced parasitic reaction in metalorganic vapor phase epitaxy.” Scientific Reports 13,3308 (2023).
[19] Hyung-Seok Lee; Kevin Ryu; Min Sun; Tomas Palacios. “Wafer-Level Heterogeneous Integration of GaN HEMTs and Si (100) MOSFETs”. IEEE ELECTRON DEVICE LETTERS. Volume:33, Issue:2. (2012).
[20] Stacia Keller, Haoran Li, Matthew Laurent, Yanling Hu, Nathan Pfaff,
Jing Lu, David F Brown, Nicholas A Fichtenbaum, James S Speck,
Steven P DenBaars and Umesh K Mishra. “Recent progress in metal-organic chemical vapor deposition of (0001 ̅) N-polar group-III nitrides.” Semicond. Sci. Technol. 29 113001. (2014).
[21] Ashwani Kumar, Maria Merlyne De Souza. “Modelling the threshold voltage of p-channel enhancement-mode GaN heterostructure field-effect transistors.” IET Power Electron. Vol. 11 Iss. 4, pp. 675-680(2018).
指導教授 賴昆佑 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明