博碩士論文 110523049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.58.77.98
姓名 許哲維(ZHE-WEI XU)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 非靜止衛星網路下基於鄰近節點緩存隊列狀態的動態路由方法
(Dynamic Routing with Queue States of Neighborhood Nodes in Non-Geostationary Satellite Networks)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 由於地理人口分佈的不均和網路接入點的存在使得網路流量請求與傳輸呈現區域性的集中,因此使用衛星星座傳輸的流量將會呈現地域性的差異,而這會導致衛星網路裡部分衛星鏈路擁塞或未得充分利用的情形。在隨著各項網路服務的推展,流量需求持續增長的背景下,為了保證衛星網絡在吞吐量和延遲有更好的性能,本文提出一套基於緩存移轉狀態的動態平衡路由協議,使鄰近衛星能夠交換有關其鏈路緩存隊列的狀態,讓發送數據的衛星能夠衡量各鏈路的和適度,流量在衛星之間更好的分配,減少發送數據衛星與相鄰衛星因擁塞所導致的數據包丟失。為了評估路由算法的性能,本文的研究建立了一套基於 Python 的模擬環境,模擬在理想的 Iridium-like 星座系統下,不同演算法在衛星節點中傳輸的表現,根據實驗結果,本文的演算法在吞吐量、丟包率和流量分配相較於靜態路由、TLR 和 QSDR 演算法,取得了更好的表現。
摘要(英) Due to uneven geographical population distribution, the presence of network access points, network traffic requests, and transmissions exhibit regional concentration. Therefore, the use of Satellite constellation transmissions will result in regional differences in traffic, leading to congestion in some satellite links or underutilization. With the continuous growth of traffic demand driven by various network services, to ensure better performance in terms of throughput and latency for satellite networks, this study in this thesis proposes a dynamic balancing routing protocol based on the transfer state. This protocol enables neighboring satellites to exchange information about their link queue states and allows sending satellites to evaluate and adaptively distribute data among the links, thereby reducing data packet loss caused by congestion between sending satellites and adjacent satellites. To evaluate the performance of the routing algorithm, this study establishes a simulation environment based on Python, where the performance of different algorithms in satellite node transmissions is examined in an ideal Iridium-like constellation system. According to experimental results, the proposed algorithm outperforms static routing, TLR, and QSDR algorithms in terms of throughput, packet loss rate, and traffic distribution.
關鍵字(中) ★ 衛星網路
★ 動態路由
★ 附載平衡
關鍵字(英) ★ satellite network
★ dynamic routing
★ load balancing
論文目次 致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
1 簡介 1
1.1 前言 1
1.2 研究目的 3
2 研究背景及文獻探討 6
2.1 衛星系統 6
2.1.1 衛星分類 7
2.1.2 衛星連接類型 8
2.1.3 衛星星座類型 9
2.2 衛星路由 10
2.2.1 拓樸轉換 10
2.2.2 最佳路徑 12
2.2.3 負載平衡 13
3 系統架構 15
3.1 衛星網路模型 15
3.2 基本路由 18
3.3 基於轉移狀態之動態負載平衡路由演算法 20
3.3.1 轉移狀態之路由 20
3.3.2 鄰近節點緩存隊列權重 21
3.3.3 動態負載平衡之轉移機率 23
3.4 演算法流程 24
4 實驗與結果分析 25
4.1 實驗環境與設備 25
4.2 實驗設計 26
4.3 參數設計 28
4.4 實驗結果與分析 30
4.4.1 路徑權重 β 影響 31
4.4.2 丟棄率與吞吐量比較 32
4.4.3 流量分佈指數比較 34
4.4.4 平均對列延遲比較 35
5 結論與未來研究 36
參考文獻 37
參考文獻 [1] T. L. Ericsson. (2021) Global mobile network data traffic and year-on-year growth (eb per month). [Online]. Available: https://www.ericsson.com/4ae28d/assets/local/reports-papers/
mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
[2] SHODAN. (2014) All devices on the internet. [Online]. Available: https://www.reddit.com/r/dataisbeautiful/comments/2evjkz/i_pinged_all_
devices_on_the_internet_heres_a_map
[3] M. Lisi, Integration and Fusion of Space and Ground Technologies and Infrastructures,
2018.
[4] wikipedia. (2023) List of orbits. [Online]. Available: https://en.wikipedia.org/wiki/
List_of_orbits
[5] Y. Hauri, D. Bhattacherjee, M. Grossmann, and A. Singla, “”internet from space”
without inter-satellite links,” Proceedings of the 19th ACM Workshop on Hot Topics
in Networks, 2020.
[6] I. Leyva-Mayorga, B. Soret, B. Matthiesen, M. Röper, D. Wübben, A. Dekorsy,
and P. Popovski, “Ngso constellation design for global connectivity,” arXiv preprint
arXiv:2203.16597, 2022.
[7] M. Orabi, J. Khalife, and Z. Kassas, Opportunistic Navigation with Doppler Measurements from Iridium Next and Orbcomm LEO Satellites, 2021.
[8] G. Giambene, S. Kota, and P. Pillai, “Satellite-5g integration: A network perspective,” IEEE Network, vol. 32, no. 5, pp. 25–31, 2018.
[9] T. d. Cola and I. Bisio, “Qos optimisation of embb services in converged 5g-satellite
networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 12 098–
12 110, 2020.
[10] Z. Qu, G. Zhang, H. Cao, and J. Xie, “Leo satellite constellation for internet of
things,” IEEE Access, vol. 5, pp. 18 391–18 401, 2017.
[11] W. Liu, Y. Tao, and L. Liu, “Load-balancing routing algorithm based on segment
routing for traffic return in leo satellite networks,” IEEE Access, vol. 7, pp. 112 044–
112 053, 2019.
[12] T. Institute for Information Industry. (2021) Influence of inter-satellite laser
optical link communication technology from the development of low-orbit
satellites. [Online]. Available: https://www.iii.org.tw/focus/FocusDtl.aspx?f_type=
1&f_sqno=2JC8TOXXdDEffe%2FFICvXzQ__&fm_sqno=12
[13] M. Werner, C. Delucchi, H. J. Vogel, G. Maral, and J. J. D. Ridder, “Atm-based
routing in leo/meo satellite networks with intersatellite links,” IEEE Journal on
Selected Areas in Communications, vol. 15, no. 1, pp. 69–82, 1997.
[14] F. Jiang, Q. Zhang, Z. Yang, and P. Yuan, “A space–time graph based multipath
routing in disruption-tolerant earth-observing satellite networks,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 55, no. 5, pp. 2592–2603, 2019.
[15] J. Jin, F. Tian, Z. Yang, H. Di, and G. Li, “A disruption tolerant distributed routing
algorithm in leo satellite networks,” Applied Sciences, vol. 12, p. 3802, 2022.
[16] G. Stock, J. A. Fraire, and H. Hermanns, “Distributed on-demand routing for leo
mega-constellations: A starlink case study,” in 2022 11th Advanced Satellite Multimedia Systems Conference and the 17th Signal Processing for Space Communications
Workshop (ASMS/SPSC), Conference Proceedings, pp. 1–8.
[17] Q. Chen, X. Chen, L. Yang, S. Wu, and X. Tao, “A distributed congestion avoidance
routing algorithm in mega-constellation network with multi-gateway,” Acta Astronautica, vol. 162, pp. 376–387, 2019.
[18] X. Qi, B. Zhang, and Z. Qiu, “A distributed survivable routing algorithm for megaconstellations with inclined orbits,” IEEE Access, vol. 8, pp. 219 199–219 213, 2020.
[19] Y. Zhu, L. Rui, X. Qiu, and H. Huang, “Double-layer satellite communication network routing algorithm based on priority and failure probability,” in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC),
Conference Proceedings, pp. 1518–1523.
[20] C. Wang, H. Wang, and W. Wang, “A two-hops state-aware routing strategy based
on deep reinforcement learning for leo satellite networks,” Electronics, vol. 8, no. 9,
2019.
[21] C. Dong, X. Xu, A. Liu, and X. Liang, “Load balancing routing algorithm based on
extended link states in leo constellation network,” China Communications, vol. 19,
no. 2, pp. 247–260, 2022.
[22] T. Taleb, D. Mashimo, A. Jamalipour, K. Hashimoto, Y. Nemoto, and N. Kato,
“Sat04-3: Elb: An explicit load balancing routing protocol for multi-hop ngeo satellite constellations,” in IEEE Globecom 2006, Conference Proceedings, pp. 1–5.
[23] G. Song, M. Chao, B. Yang, and Y. Zheng, “Tlr: A traffic-light-based intelligent
routing strategy for ngeo satellite ip networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp. 3380–3393, 2014.
[24] S. Liu, D. Wu, and L. Zhang, “A routing model based on multiple-user requirements
and the optimal solution,” IEEE Access, vol. 8, pp. 156 470–156 483, 2020.
[25] S. Li and F. Tang, “Load-balanced cooperative transmission in meo-leo satellite network,” in 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), Conference Proceedings, pp. 564–571.
[26] Y. Wang, X. Zhang, and T. Zhang, “A flooding-based routing algorithm for ads-b
packets transmission in leo satellite network,” in 2019 Integrated Communications,
Navigation and Surveillance Conference (ICNS), Conference Proceedings, pp. 1–9.
[27] H. Li, H. Zhang, L. Qiao, F. Tang, W. Xu, L. Chen, and J. Li, “Queue state based
dynamical routing for non-geostationary satellite networks,” pp. 1–8, 2018.
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明