博碩士論文 110226084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.149.213.209
姓名 吳亮廷(Liang-Ting Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 鍺薄膜與氧化鍺薄膜在短波紅外光特性與應用
(Investigation of the Optical Properties and Application of Hydrogenated Germanium and Germanium Oxide for Short-Wave infrared)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 短波紅外光波段(SWIR)為不可見光,在1350 nm、1550 nm 波段有低散射、不被水吸收、能穿透矽、還能區分可見光無法分辨的細節,所以目前市場上短波紅外光感測器的需求在大量增加。而在感測器微型化跟元件整合的提升下,現有材料設計出的多層膜過厚,需要新的在紅外光波段低吸收的高折射率材料,來完成光學濾光片的應用。本研究將鍺和氧化鍺,作為高、低折射率材料,確認材料特性並實際應用。
鍺過去做為第一代半導體材料被廣泛研究,但在光學方面的研究較少。本實驗選擇反應式高功率脈衝磁控濺鍍來鍍製鍺薄膜。實驗分為三個部分:第一部分為確認製程參數,依序調變腔體溫度、功率、HiPIMS Duty Cycle,優化鍺薄膜的結構來獲得較佳光學特性。第二部分為調變氣體通量:藉由控制氫氣、氧氣個別通量和通時通入氫和氧,調整鍺薄膜中氫、氧摻雜量,確認氫、氧鍵結對鍺薄膜的影響。並確認鍺和氧化鍺作為高、低折射率材料的折射率和消光係數。第三部分為設計並鍍製多層膜:結合前兩部分的結果,以同腔體同靶材不同氣體摻雜量,實際濺鍍穿透窗於1550 nm和1350 nm的窄波通光學濾光片。
摘要(英) Shortwave infrared (SWIR) light, which is invisible, exhibits low scattering and low water absorption at 1350 nm and 1550 nm wavelength ranges. It can transmit silicon to resolve details that are not analyzed by visible light. Therefore, the demand for SWIR sensors has significantly increased in the market. However, the multilayer design for SWIR filters is too thick to achieve the advancements of miniaturization and integration. A high refractive index material with low absorption is necessary to develop SWIR filters. In this study, germanium and germanium oxide are used as high and low refractive index materials, respectively, to aim their characteristics and practical applications.
Germanium is the first-generation semiconductor material, however there are less research about its optical properties. In this experiment, reactive high power impulse magnetron sputtering (HiPIMS) is chosen as the deposition method for germanium thin films. The experiment consists of three parts. Firstly, the process parameters are optimized by adjusting the fabricated temperature, power, and HiPIMS duty cycle to improve optical properties. Secondly, the gas flux is modulated by controlling the flow rates of hydrogen and oxygen, to adjust the hydrogen and oxygen doping concentration in the germanium thin films and then to evaluate the film properties such as the refractive index and extinction coefficient of germanium and germanium oxide. Lastly, based on the results from the previous two parts, multilayer SWIR filters are designed and fabricated in the same chamber and target materials with different working gases to achieve the narrowband pass filters for the transmission bands at 1550 nm and 1350 nm.
關鍵字(中) ★ 短波紅外光
★ 鍺
★ 氧化鍺
★ 帶通濾光片
★ 光學應用
關鍵字(英) ★ Short-wave infrared(SWIR)
★ Ge
★ Germanium oxide
★ Bandpass filter
★ Optical properties
論文目次 摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
1 第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 2
2 第二章、基礎理論 4
2-1 材料特性 4
2-1-1 鍺(Germanium, Ge) 4
2-1-2 莫斯-伯斯坦效應(Burstein-Moss effect) 6
2-1-3 鍺缺陷與鍵結 7
2-1-4 氫化鍺鍵結的低拉伸、高拉伸模式(Low Stretching Mode and High Stretching Mode, LSM, HSM) 8
2-2 薄膜製程 9
2-2-1 薄膜生長機制 9
2-2-2 氫原子的薄膜沉積 9
2-2-3 電漿(Plasma) 10
2-2-4 薄膜製程(Thin film) 10
2-2-5 物理氣相沉積(Physical Vapor Deposition, PVD) 11
2-2-6 磁控濺鍍(Magnetron Sputtering) 11
2-2-7 反應式濺鍍(Reactive Sputtering) 12
2-2-8 高功率脈衝磁控濺鍍(High Power Impulse Magnetron Sputtering, HiPIMS) 13
2-3 光學多層膜堆設計 14
3 第三章、實驗流程與儀器架構 15
3-1 實驗流程 15
3-2 製程儀器 17
3-3 量測儀器 18
3-3-1 紫外/可見/近紅外光光譜儀(UV/VIS/NIR Spectrophotometer) 18
3-3-2 Essential Macleod 20
3-3-3 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 20
3-3-4 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 23
3-3-5 Fityk 24
3-3-6 X光繞射儀(X-ray diffractometer, XRD) 24
4 第四章、實驗結果 25
4-1 單層膜濺鍍的製程優化 25
4-1-1 溫度 26
4-1-2 功率 31
4-1-3 Duty Cycle 35
4-1-4 高氧參數下的Duty Cycle 40
4-1 結論 42
4-2 氣體摻雜影響之分析 43
4-2-1 氫化鍺 43
4-2-2 氧化鍺 47
4-2-3 氫氧化鍺 54
4-2 結論 62
4-3 光學多層膜 63
4-3-1 參數確認 63
4-3-2 中心波長1550 nm窄帶濾光片 65
4-3-3 中心波長1350 nm窄帶濾光片 68
5 第五章、結論 70
5-1 實驗結論 70
5-2 實驗限制 71
5-3 未來規劃 71
參考文獻 72
參考文獻 [1] "SWIR White Paper." Smart Vision Lights. https://smartvisionlights.com/swir-wavelengths-lighting/ (accessed 2023).
[2] R. A. Rohde. "Solar spectrum." https://en.wikipedia.org/wiki/Sunlight#/media/File:Solar_spectrum_en.svg (accessed 2013).
[3] M. Hansen and D. Malchow, "Overview of SWIR detectors, cameras, and applications," 03/01 2008, doi: 10.1117/12.777776.
[4] H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, "a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters," Appl. Opt., vol. 43, no. 17, pp. 3548-3554, 2004/06/10 2004, doi: 10.1364/AO.43.003548.
[5] S. Chae, H. Paik, N. M. Vu, E. Kioupakis, and J. T. Heron, "Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy," Applied Physics Letters, vol. 117, no. 7, 2020, doi: 10.1063/5.0018031.
[6] "晶圓級光學薄膜製程." 采鈺科技股份有限公司(VisEra). https://www.viseratech.com/tw/technology/technology-detail/MultipleFilm/ (accessed 2020).
[7] I. Chambouleyron et al., "The Perspectives of Hydrogenated Amorphous Germanium as an Electronic Material," physica status solidi (b), vol. 192, no. 2, pp. 241-251, 1995, doi: https://doi.org/10.1002/pssb.2221920203.
[8] M. Guo, H. He, K. Yi, S. Shao, G. Hu, and J. Shao, "Optical characteristics of ultrathin amorphous Ge films," Chinese Optics Letters, vol. 18, no. 10, 2020, doi: 10.3788/col202018.103101.
[9] B. Schröder, A. Annen, T. Drüsedau, H. Freistedt, P. Deák, and H. Oechsner, "Influence of oxygen incorporation on the properties of magnetron sputtered hydrogenated amorphous germanium films," Applied Physics Letters, vol. 62, no. 16, pp. 1961-1963, 1993, doi: 10.1063/1.109504.
[10] H. Liu et al., "Study on characterization method of optical constants of germanium thin films from absorption to transparent region," Materials Science in Semiconductor Processing, vol. 83, pp. 58-62, 2018, doi: 10.1016/j.mssp.2018.04.019.
[11] M. Stutzmann, "The defect density in amorphous silicon," Philosophical Magazine B, vol. 60, no. 4, pp. 531-546, 1989/10/01 1989, doi: 10.1080/13642818908205926.
[12] K. N. Astankova, E. B. Gorokhov, I. A. Azarov, V. A. Volodin, and A. V. Latyshev, "Study of Structural Modification of Composites with Ge Nanoclusters by Optical and Electron Microscopy Methods," Semiconductors, vol. 53, no. 16, pp. 2064-2067, 2020, doi: 10.1134/s1063782619120030.
[13] 郭勃亨, "雙加熱器有機金屬化學氣相沉積系統上、下加熱板溫度對氮化銦鎵薄膜成長之研究," 碩士, 電子物理系所, 國立交通大學, 新竹市, 2012. [Online]. Available: https://hdl.handle.net/11296/44k5e3
[14] M. Cardona, "Vibrational Spectra of Hydrogen in Silicon and Germanium," physica status solidi (b), vol. 118, no. 2, pp. 463-481, 1983, doi: https://doi.org/10.1002/pssb.2221180202.
[15] C. G. Van de Walle, J. R. Weber, and A. Janotti, "Role of hydrogen at germanium/dielectric interfaces," Thin Solid Films, vol. 517, no. 1, pp. 144-147, 2008, doi: 10.1016/j.tsf.2008.08.071.
[16] W. Paul, S. J. Jones, W. A. Turner, and P. Wickboldt, "Structural properties of amorphous hydrogenated germanium," Journal of Non-Crystalline Solids, vol. 141, pp. 271-286, 1992/01/01/ 1992, doi: https://doi.org/10.1016/S0022-3093(05)80542-3.
[17] C. Q. Hu et al., "Relationship between dielectric coefficient and Urbach tail width of hydrogenated amorphous germanium carbon alloy films," Applied Physics Letters, vol. 101, no. 4, 2012, doi: 10.1063/1.4739788.
[18] M. Zacharias and J. Bläsing, "Preparation of a-GeOx:H alloys: Vibrational, optical, and structural properties," Physical Review B, vol. 52, no. 19, pp. 14018-14024, 11/15/ 1995, doi: 10.1103/PhysRevB.52.14018.
[19] A. Alessi, J. Kuhnhenn, G. Buscarino, D. Di Francesca, and S. Agnello, "The Relevance of Point Defects in Studying Silica-Based Materials from Bulk to Nanosystems," Electronics, vol. 8, no. 12, 2019, doi: 10.3390/electronics8121378.
[20] T. Sameshima, K. Yoshioka, and K. Takechi, "Germanium Oxide Layers Used for Forward Transfer of Electrical Circuits to Foreign Plastic Substrates," Japanese Journal of Applied Physics, vol. 44, no. 9R, 2005, doi: 10.1143/jjap.44.6421.
[21] G. Lucovsky, S. S. Chao, J. Yang, J. E. Tyler, R. C. Ross, and W. Czubatyj a, "Chemical bonding of hydrogen and oxygen in glow-discharge-deposited thin films of a-Ge:H and a-Ge:(H,O)," Phys Rev B Condens Matter, vol. 31, no. 4, pp. 2190-2197, Feb 15 1985, doi: 10.1103/physrevb.31.2190.
[22] T. N. Nunley et al., "Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6eV via a multisample ellipsometry investigation," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 34, no. 6, 2016, doi: 10.1116/1.4963075.
[23] M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, "Structure and photoluminescence properties of evaporated GeOx thin films," Applied Physics Letters, vol. 89, no. 1, 2006, doi: 10.1063/1.2218830.
[24] M. Ardyanian, H. Rinnert, and M. Vergnat, "Influence of hydrogenation on the structure and visible photoluminescence of germanium oxide thin films," Journal of Luminescence, vol. 129, no. 7, pp. 729-733, 2009/07/01/ 2009, doi: https://doi.org/10.1016/j.jlumin.2009.02.013.
[25] S. C. Dixon, D. O. Scanlon, C. J. Carmalt, and I. P. Parkin, "n-Type doped transparent conducting binary oxides: an overview," Journal of Materials Chemistry C, vol. 4, no. 29, pp. 6946-6961, 2016, doi: 10.1039/c6tc01881e.
[26] P. Deák, B. Schröder, A. Annen, and A. Scholz, "Oxygen-hydrogen donor complexes in germanium," Physical Review B, vol. 48, no. 3, pp. 1924-1927, 07/15/ 1993, doi: 10.1103/PhysRevB.48.1924.
[27] W. Beyer, J. Herion, H. Wagner, and U. Zastrow, "Hydrogen stability in amorphous germanium films," Philosophical Magazine B, vol. 63, no. 1, pp. 269-279, 1991/01/01 1991, doi: 10.1080/01418639108224444.
[28] A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, "Vacancies and voids in hydrogenated amorphous silicon," Applied Physics Letters, vol. 82, no. 10, pp. 1547-1549, 2003, doi: 10.1063/1.1559657.
[29] M. Kumru, "A comparison of the optical, IR, electron spin resonance and conductivity properties of a-Ge1−xCx:H with a-Ge:H and a-Ge thin films prepared by r.f. sputtering," Thin Solid Films, vol. 198, no. 1, pp. 75-84, 1991/03/20/ 1991, doi: https://doi.org/10.1016/0040-6090(91)90326-S.
[30] T. de Vrijer and A. H. M. Smets, "Infrared analysis of catalytic CO(2) reduction in hydrogenated germanium," Phys Chem Chem Phys, vol. 24, no. 17, pp. 10241-10248, May 4 2022, doi: 10.1039/d2cp01054b.
[31] T. N. Nunley et al., "Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6eV via a multisample ellipsometry investigation," Journal of Vacuum Science & Technology B, vol. 34, no. 6, 2016, doi: 10.1116/1.4963075.
[32] 李正中, 薄膜光學與鍍膜技術. 新北市: 藝軒, 2020.
[33] T. de Vrijer et al., "Opto-Electrical Properties of Group IV Alloys: The Inherent Challenges of Processing Hydrogenated Germanium," Adv Sci (Weinh), vol. 9, no. 18, p. e2200814, Jun 2022, doi: 10.1002/advs.202200814.
[34] T. de Vrijer, B. Bouazzata, and A. H. M. Smets, "Spectroscopic review of hydrogenated, carbonated and oxygenated group IV alloys," Vibrational Spectroscopy, vol. 121, 2022, doi: 10.1016/j.vibspec.2022.103387.
[35] T. de Vrijer, H. Parasramka, S. J. Roerink, and A. H. M. Smets, "An expedient semi-empirical modelling approach for optimal bandgap profiling of stoichiometric absorbers: A case study of thin film amorphous silicon germanium for use in multijunction photovoltaic devices," Sol. Energy Mater. Sol. Cells, vol. 225, 2021, doi: 10.1016/j.solmat.2021.111051.
[36] T. de Vrijer, J. E. C. van Dingen, P. J. Roelandschap, K. Roodenburg, and A. H. M. Smets, "Improved PECVD processed hydrogenated germanium films through temperature induced densification," Materials Science in Semiconductor Processing, vol. 138, 2022, doi: 10.1016/j.mssp.2021.106285.
[37] A. Anders, "Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)," J. Appl. Phys., vol. 121, no. 17, 2017, doi: 10.1063/1.4978350.
[38] 李昱奇, "利用脈衝濺鍍法成長單晶鍺薄膜之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/st6rms
[39] 李志偉, "反應式高功率脈衝磁控濺鍍技術的發展," (in 繁體中文), 真空科技, vol. 33, no. 2, pp. 9-25, 2020.
[40] F. Cheng, Q. Cao, Y. Guan, H. Cheng, X. Wang, and J. D. Miller, "FTIR analysis of water structure and its influence on the flotation of arcanite (K2SO4) and epsomite (MgSO4·7H2O)," International Journal of Mineral Processing, vol. 122, pp. 36-42, 2013, doi: 10.1016/j.minpro.2013.04.007.
[41] R. F. Cuevas, E. H. Sekiya, A. Garcia-Quiroz, E. C. Da Silva, and C. K. Suzuki, "Dependence of H2/O2 ratio and GeO2 content on the enhancement of second-order non-linearity related defects in Ge-doped optical fiber preforms," Materials Science and Engineering: B, vol. 111, no. 2-3, pp. 135-141, 2004, doi: 10.1016/j.mseb.2004.04.010.
[42] B. Torun, C. Kunze, C. Zhang, T. D. Kuhne, and G. Grundmeier, "Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up," Phys Chem Chem Phys, vol. 16, no. 16, pp. 7377-84, Apr 28 2014, doi: 10.1039/c3cp54912g.
[43] V. Volodin and E. Gorokhov, "Ge nanoclusters in GeO2 films: Synthesis, structural research and optical properties," 2008, pp. 331-370.
[44] G. E. Ewing, "Thin Film Water," The Journal of Physical Chemistry B, vol. 108, no. 41, pp. 15953-15961, 2004/10/01 2004, doi: 10.1021/jp040378+.
[45] Y.-P. Chou and S.-C. Lee, "Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys," J. Appl. Phys., vol. 83, no. 8, pp. 4111-4123, 1998, doi: 10.1063/1.367229.
[46] Y.-P. Chou and S.-C. Lee, "Evidence for the void size related IR absorption frequency shifts in hydrogenated amorphous germanium films," Solid State Communications, vol. 113, no. 2, pp. 73-75, 1999/11/30/ 1999, doi: https://doi.org/10.1016/S0038-1098(99)00443-3.
[47] "Applications of Electron Spectroscopy in Materials Science," in An Introduction to Surface Analysis by XPS and AES, 2003, pp. 113-164.
[48] "Comparison of XPS and AES with Other Analytical Techniques," in An Introduction to Surface Analysis by XPS and AES, 2003, pp. 165-182.
[49] A. S. Almuslem et al., "Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing," Applied Physics Letters, vol. 110, no. 7, 2017, doi: 10.1063/1.4976311.
[50] "Compositional Depth Profiling," in An Introduction to Surface Analysis by XPS and AES, 2003, pp. 79-111.
[51] M. Wojdyr, "Fityk: a general-purpose peak fitting program," Journal of Applied Crystallography, vol. 43, no. 5 Part 1, pp. 1126-1128, 2010, doi: doi:10.1107/S0021889810030499.
[52] K. Hatano, Y. Asano, Y. Kameda, A. Koshio, and F. Kokai, "Formation of Germanium-Carbon Core-Shell Nanowires by Laser Vaporization in High-Pressure Ar Gas without the Addition of Other Metal Catalysts," Materials Sciences and Applications, vol. 08, no. 12, pp. 838-847, 2017, doi: 10.4236/msa.2017.812061.
[53] T. Drüsedau and B. Schröder, "Optimization of process parameters for the deposition of improved a‐Ge:H by dc magnetron sputtering," J. Appl. Phys., vol. 75, no. 6, pp. 2864-2875, 1994, doi: 10.1063/1.356180.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2023-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明