參考文獻 |
[1] Anwar, S., Khan, F., Zhang, Y., and Djire, A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrog. Energy 2021, 32284-32317.
[2] van der Zalm, J. M., Quintal, J., Hira, S. A., Chen, S., and Chen, A. Recent trends in electrochemical catalyst design for hydrogen evolution, oxygen evolution, and overall water splitting. Electrochim. Acta 2023, 141715.
[3] Johnson, D., Pranada, E., Yoo, R., Uwadiunor, E., Ngozichukwu, B., and Djire, A. Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy Fuels 2023.
[4] Liu, F., Shi, C., Guo, X., He, Z., Pan, L., Huang, Z. F., Zhang, X., and Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 2200307.
[5] Sarkar, S. and Peter, S. C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 2060-2080.
[6] Zhang, C., Liu, W., Chen, C., Ni, P., Wang, B., Jiang, Y., and Lu, Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022, 2915-2942.
[7] Djire, A., Zhang, H., Reinhart, B. J., Nwamba, O. C., and Neale, N. R. Mechanisms of hydrogen evolution reaction in two-dimensional nitride mxenes using in situ x-ray absorption spectroelectrochemistry. ACS Catal. 2021, 3128-3136.
[8] Li, Z., Feng, Y., Liang, Y. L., Cheng, C. Q., Dong, C. K., Liu, H., and Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 1908521.
[9] Hu, C., Ma, Q., Hung, S.-F., Chen, Z.-N., Ou, D., Ren, B., Chen, H. M., Fu, G., and Zheng, N. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 2017, 122-133.
[10] Wei, J., Xiao, K., Chen, Y., Guo, X.-P., Huang, B., and Liu, Z.-Q. In situ precise anchoring of Pt single atoms in spinel Mn 3 O 4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 4592-4600.
[11] Wang, J., Tan, H. Y., Kuo, T. R., Lin, S. C., Hsu, C. S., Zhu, Y., Chu, Y. C., Chen, T. L., Lee, J. F., and Chen, H. M. In situ identifying the dynamic structure behind activity of atomically dispersed platinum catalyst toward hydrogen evolution reaction. Small 2021, 2005713.
[12] Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S., and Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2019, 851-918.
[13] Jin, M., Zhang, X., Niu, S., Wang, Q., Huang, R., Ling, R., Huang, J., Shi, R., Amini, A., and Cheng, C. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm–2. ACS nano 2022, 11577-11597.
[14] Zhou, F., Zhou, Y., Liu, G. G., Wang, C. T., and Wang, J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals 2021, 3375-3405.
[15] Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 19484-19518.
[16] Zhai, W., Ma, Y., Chen, D., Ho, J. C., Dai, Z., and Qu, Y. Recent progress on the long‐term stability of hydrogen evolution reaction electrocatalysts. InfoMat 2022, e12357.
[17] Wang, Z., Mao, Y., Zhang, H., Deng, K., Yu, H., Wang, X., Xu, Y., Wang, H., and Wang, L. Hydrogen-intercalation-induced lattice expansion of mesoporous PtPd nanocrystals for enhanced hydrogen evolution. Sustain. Energy Fuels 2023.
[18] Guo, S., Liu, Y., Murphy, E., Ly, A., Xu, M., Matanovic, I., Pan, X., and Atanassov, P. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B 2022, 121659.
[19] Chen, H., Zhang, B., Liang, X., and Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chinese J. Catal. 2022, 611-635.
[20] Wang, D., Jiang, X., Lin, Z., Zeng, X., Zhu, Y., Wang, Y., Gong, M., Tang, Y., and Fu, G. Ethanol‐Induced Hydrogen Insertion in Ultrafine IrPdH Boosts pH‐Universal Hydrogen Evolution. Small 2022, 2204063.
[21] Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Lei, B.-H., Singh, D. J., and Zheng, W. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 3645-3651.
[22] Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S. Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Adv. Energy Mater. 2020, 1903120.
[23] Yao, R.-Q., Zhou, Y.-T., Shi, H., Zhang, Q.-H., Gu, L., Wen, Z., Lang, X.-Y., and Jiang, Q. Nanoporous palladium–silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2019, 1379-1386.
[24] Sultan, S., Tiwari, J. N., Singh, A. N., Zhumagali, S., Ha, M., Myung, C. W., Thangavel, P., and Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 1900624.
[25] Xu, B., Zhang, Y., Li, L., Shao, Q., and Huang, X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022, 214388.
[26] Fan, J., Du, H., Zhao, Y., Wang, Q., Liu, Y., Li, D., and Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 13560-13583.
[27] Lu, L., Zou, S., and Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal. 2021, 6020-6058.
[28] Xia, Z. and Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 3265-3278.
[29] Guo, X., Hu, Z., Lv, J., Li, H., Zhang, Q., Gu, L., Zhou, W., Zhang, J., and Hu, S. Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 1288-1294.
[30] Lu, Y., Wang, J., Peng, Y., Fisher, A., and Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 1700919.
[31] Fan, J., Cui, X., Yu, S., Gu, L., Zhang, Q., Meng, F., Peng, Z., Ma, L., Ma, J.-Y., and Qi, K. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS nano 2019, 12987-12995.
[32] Jia, Y., Huang, T.-H., Lin, S., Guo, L., Yu, Y.-M., Wang, J.-H., Wang, K.-W., and Dai, S. Stable Pd–Cu hydride catalyst for efficient hydrogen evolution. Nano Lett. 2022, 1391-1397.
[33] Silalahi, R. P. B., Jo, Y., Liao, J.-H., Chiu, T.-H., Park, E., Choi, W., Liang, H., Kahlal, S., Saillard, J.-Y., and Lee, D. Hydride‐containing 2‐Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, e202301272.
[34] Koss, U., Hubkowska, K., Łukaszewski, M., and Czerwiński, A. Influence of temperature on hydrogen electrosorption into palladium-noble metal alloys. Part 3: Palladium–rhodium alloys. Electrochim. Acta 2013, 269-275.
[35] Štrbac, S., Smiljanić, M., and Rakočević, Z. Electrocatalysis of hydrogen evolution on polycrystalline palladium by rhodium nanoislands in alkaline solution. J. Electroanal. Chem. 2015, 115-121.
[36] Du, R., Jin, W., Hübner, R., Zhou, L., Hu, Y., and Eychmüller, A. Engineering multimetallic aerogels for pH‐universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 1903857.
[37] Li, L., Zhang, G., Wang, B., Yang, T., and Yang, S. Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 2090-2098.
[38] Zhong, M., Li, L., Zhao, K., He, F., Su, B., and Wang, D. PdCo alloys@ N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Sci. 2021, 14222-14233.
[39] Kaushik, P., Kaur, G., Chaudhary, G. R., and Batra, U. Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 149769.
[40] Su, L., Zhao, Y., Jin, Y., Fan, X., Liu, Z., and Luo, W. Dp orbital hybridization in RhSn catalyst boosts hydrogen oxidation reaction under alkaline electrolyte. J. Mater. Chem. A 2022.
[41] Xu, Q., Zhang, J., Zhang, H., Zhang, L., Chen, L., Hu, Y., Jiang, H., and Li, C. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 5228-5259.
[42] Yin, X., Sun, G., Su, L., Wang, L., and Shao, G. Surface roughening of nanoparticle-stacked porous NiCoO2@ C microflakes arrays grown on Ni foam for enhanced hydrogen evolution activity. Electrochim. Acta 2018, 226-233.
[43] Yang, L., Wang, N., Tao, B., Miao, F., Zang, Y., and Chu, P. K. Co (OH) 2 nanosheet arrays electrodeposited with palladium nanoparticles for hydrogen evolution reaction. J. Alloys Compd. 2019, 151775.
[44] Wang, G., Liu, J., Sui, Y., Wang, M., Qiao, L., Du, F., and Zou, B. Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis. J. Mater. Chem. A 2019, 14876-14881.
[45] Tung, C.-W., Huang, Y.-P., Hsu, C.-S., Chen, T.-L., Chang, C.-J., Chen, H. M., and Chen, H.-C. Tracking the in situ generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalytic hydrogen evolution. Catal. Sci. Technol. 2022, 3234-3239.
[46] Bugaev, A. L., Zabilskiy, M., Skorynina, A. A., Usoltsev, O. A., Soldatov, A. V., and van Bokhoven, J. A. In situ formation of surface and bulk oxides in small palladium nanoparticles. ChemComm 2020, 13097-13100.
[47] Sheng, W., Kattel, S., Yao, S., Yan, B., Liang, Z., Hawxhurst, C. J., Wu, Q., and Chen, J. G. Electrochemical reduction of CO 2 to synthesis gas with controlled CO/H 2 ratios. Energy Environ. Sci. 2017, 1180-1185.
[48] Zhu, W., Kattel, S., Jiao, F., and Chen, J. G. Shape‐controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 1802840.
[49] Yoshii, T., Nakatsuka, K., Kuwahara, Y., Mori, K., and Yamashita, H. Synthesis of carbon-supported Pd–Co bimetallic catalysts templated by Co nanoparticles using the galvanic replacement method for selective hydrogenation. RSC Adv. 2017, 22294-22300.
[50] Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., Piovano, A., Emerich, H., Soldatov, A. V., and Bugaev, L. A. In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catal. Today 2017, 119-126.
[51] Sun, H.-Y., Ding, Y., Yue, Y.-Q., Xue, Q., Li, F.-M., Jiang, J.-X., Chen, P., and Chen, Y. Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl. Mater. Interfaces 2021, 13149-13157.
[52] Shen, C., Chen, H., Qiu, M., Shi, Y., Yan, W., Jiang, Q., Jiang, Y., and Xie, Z. Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation. J. Mater. Chem. A 2022, 1735-1741.
[53] Liu, S., Zhang, H., Mu, X., and Chen, C. Surface reconstruction engineering of twinned Pd2CoAg nanocrystals by atomic vacancy inducement for hydrogen evolution and oxygen reduction reactions. Appl. Catal. B 2019, 424-429. |