博碩士論文 110329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.133.137.53
姓名 曾楷杰(Kai-Jie Zeng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 氫插入和鈷合金化對鈀鈷氫化物觸媒在酸性和鹼性介質中析氫反應的影響
(The Effect of Hydrogen Insertion and Cobalt Alloying of Pd-Co Hydride Catalysts on Hydrogen Evolution Reaction Performance in Acidic and Alkaline Media)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 電化學水分解是解決環境問題和日益枯竭的傳統能源之具有前景的解決方案,然而析氫反應和析氧反應的緩慢動力學阻礙了這一過程,因此高活性和耐久性電催化劑的應用為克服這一挑戰的關鍵,而開發酸鹼值通用的電催化劑以實現可持續和可再生的氫氣生產至關重要。本研究提出了一種Pd基電催化劑作為替代Pt的有效方案,採用簡單的油胺法合成鈀鈷氫化物析氫電催化劑(PdCo0.3H0.2/C),它結合了PdCo(鈷通過協同作用改變了鈀的電子結構,並提高了其水解能力)和PdH (氫減弱了Pd-H鍵並隨之提高了析氫活性)的優點。值得注意的是,PdCo0.3H0.2/C優於對照組(包含 Pd/C 和 PdH0.2/C),在酸性和鹼性溶液中表現出優異的穩定性和活性,包括最低的過電位(18、32 mV),極佳之Tafel斜率(19、82 mV dec-1)和最高的質量活性(分別比PdH0.2/C高出5倍和2倍),以及 5000 次循環的出色穩定性。此外,經過鹼性穩定性測試後,PdCo0.3H0.2/C的電化學性能進一步提升,這歸因於氫化物提供的活性位點和親氧鈷作為優異水解中心。此外,通過原位X光吸收光譜(X-ray absorption spectroscopy, XAS)和感應耦合電漿放射光譜儀(Inductively coupled plasma optical emission, ICP-OES)分析提供了對鈀鈷氫化物析氫電催化劑(PdCo0.3H0.2/C)穩定性的分析。In-situ XAS顯示穩定度測試後結構穩定無變化,而ICP-OES結果表明適當的氫插入可以有效地緩和金屬溶解速率並提高 析氫反應的耐久性。此外,為了瞭解Co/H的含量對於析氫效能的影響,製備了包括PdHX、PdCo0.3HX和PdCoXHY的三種系列樣品,發現H和Co的最佳比例可以最大化Pd的析氫活性和穩定性。 我們的研究不僅提供了一種合成高效且耐久的Pd-Co氫化物析氫催化劑的簡單策略,而且深入了解了其出色性能背後的機制。這些結果為開發高效和長效析氫催化劑提供了一個有前景的方法。
摘要(英) Electrochemical water splitting presents a promising solution to environmental concerns and energy shortage, yet the sluggish kinetics of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) reactions impede the process. The use of high-activity and durable electrocatalysts is critical in overcoming this challenge. Hence, developing pH-universal electrocatalysts for sustainable and renewable hydrogen production is imperative. This study presents the development of a Pd-based electrocatalyst as a promising alternative to Pt. A Pd-Co hydride HER electrocatalyst (PdCo0.3H0.2/C) was synthesized via a simple oleylamine method, which combines the benefits of PdCo (Co modifies the electronic structure of Pd and improves its hydrolysis ability by a synergistic effect) and PdH (H weakening the Pd-H bond and subsequently improving the HER activity). Notably, PdCo0.3H0.2/C outperformed the control group (comprising Pd/C and PdH0.2/C) by displaying superior stability and activity in acidic and alkaline solutions, including the lowest overpotential (18 and 32 mV), impressive Tafel slope (19 and 82 mV dec-1), and the highest mass activity (5 and 2 times greater than PdH0.2/C), respectively, as well as outstanding stability of 5000 cycles. Moreover, after undergoing the alkaline stability test, the electrochemical performance of PdCo0.3H0.2/C was significantly improved, attributed to the active sites provided by the hydride phase and the presence of oxophilic Co as an excellent hydrolysis center. Furthermore, our study provides insights into the stability of the Pd-Co hydride HER electrocatalyst (PdCo0.3H0.2/C) through in-situ X-ray absorption spectroscopy (XAS) and Inductively coupled plasma optical emission analysis (ICP-OES). In-situ XAS revealed no significant structural changes during the stability test, while ICP-OES results indicated that the appropriate insertion of hydrogen and Co alloying can effectively moderate the metal dissolution rate and enhance the durability of HER. In addition, to further investigate the relationship between Co/H contents and HER performance, three different series of samples, including PdHX, PdCo0.3HX, and PdCoXHY were evaluated revealing that the optimal ratio of H and Co could maximize the HER activity and stability of Pd. Our study not only provides a simple strategy for the synthesis of efficient and durable Pd-Co hydride HER electrocatalysts, but also advances our understanding of the mechanisms behind the exceptional performance. These results offer a promising approach for the development of efficient and long-lasting HER electrocatalysts.
關鍵字(中) ★ 析氫反應氫鍵能
★ 氫化鈀
★ 鈀鈷
★ X 射線吸收光譜
★ 原位
★ 穩定性
關鍵字(英) ★ hydrogen evolution reaction
★ palladium hydride
★ PdCo
★ X-ray absorption spectrum
★ in-situ
★ stability
論文目次 摘要 i
Abstract ii
致謝 iv
Table of Content vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Mechanism of HER 2
1.2 Modification of Pd Catalysts by Light Atoms 4
1.3 Modification of Pd Catalysts by Alloying 6
1.4 The Application of In-Situ X-ray Absorption Spectroscopy (XAS) in HER 7
1.5 Motivation and Approach 8
Chapter 2 Experimental Section 9
2.1 Materials and Methods 9
2.1.1 Materials 9
2.1.2 Preparation of PdHX NPs 9
2.1.3 Preparation of PdCo0.3HX catalysts 9
2.2 Materials Characterization 11
2.3 Electrochemical Measurements 12
Chapter 3 Result and Discussion 15
3.1 The Characterizations of Pd-based Catalysts 15
3.2 Electrocatalytic Performance 21
3.3 In-situ XAS in HER 28
3.4 Effect of H/Co ratio on Pd-based catalyst performance 36
Chapter 4 Conclusions 39
Reference 41
參考文獻 [1] Anwar, S., Khan, F., Zhang, Y., and Djire, A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrog. Energy 2021, 32284-32317.
[2] van der Zalm, J. M., Quintal, J., Hira, S. A., Chen, S., and Chen, A. Recent trends in electrochemical catalyst design for hydrogen evolution, oxygen evolution, and overall water splitting. Electrochim. Acta 2023, 141715.
[3] Johnson, D., Pranada, E., Yoo, R., Uwadiunor, E., Ngozichukwu, B., and Djire, A. Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy Fuels 2023.
[4] Liu, F., Shi, C., Guo, X., He, Z., Pan, L., Huang, Z. F., Zhang, X., and Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 2200307.
[5] Sarkar, S. and Peter, S. C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 2060-2080.
[6] Zhang, C., Liu, W., Chen, C., Ni, P., Wang, B., Jiang, Y., and Lu, Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022, 2915-2942.
[7] Djire, A., Zhang, H., Reinhart, B. J., Nwamba, O. C., and Neale, N. R. Mechanisms of hydrogen evolution reaction in two-dimensional nitride mxenes using in situ x-ray absorption spectroelectrochemistry. ACS Catal. 2021, 3128-3136.
[8] Li, Z., Feng, Y., Liang, Y. L., Cheng, C. Q., Dong, C. K., Liu, H., and Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 1908521.
[9] Hu, C., Ma, Q., Hung, S.-F., Chen, Z.-N., Ou, D., Ren, B., Chen, H. M., Fu, G., and Zheng, N. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 2017, 122-133.
[10] Wei, J., Xiao, K., Chen, Y., Guo, X.-P., Huang, B., and Liu, Z.-Q. In situ precise anchoring of Pt single atoms in spinel Mn 3 O 4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 4592-4600.
[11] Wang, J., Tan, H. Y., Kuo, T. R., Lin, S. C., Hsu, C. S., Zhu, Y., Chu, Y. C., Chen, T. L., Lee, J. F., and Chen, H. M. In situ identifying the dynamic structure behind activity of atomically dispersed platinum catalyst toward hydrogen evolution reaction. Small 2021, 2005713.
[12] Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S., and Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2019, 851-918.
[13] Jin, M., Zhang, X., Niu, S., Wang, Q., Huang, R., Ling, R., Huang, J., Shi, R., Amini, A., and Cheng, C. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm–2. ACS nano 2022, 11577-11597.
[14] Zhou, F., Zhou, Y., Liu, G. G., Wang, C. T., and Wang, J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals 2021, 3375-3405.
[15] Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 19484-19518.
[16] Zhai, W., Ma, Y., Chen, D., Ho, J. C., Dai, Z., and Qu, Y. Recent progress on the long‐term stability of hydrogen evolution reaction electrocatalysts. InfoMat 2022, e12357.
[17] Wang, Z., Mao, Y., Zhang, H., Deng, K., Yu, H., Wang, X., Xu, Y., Wang, H., and Wang, L. Hydrogen-intercalation-induced lattice expansion of mesoporous PtPd nanocrystals for enhanced hydrogen evolution. Sustain. Energy Fuels 2023.
[18] Guo, S., Liu, Y., Murphy, E., Ly, A., Xu, M., Matanovic, I., Pan, X., and Atanassov, P. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B 2022, 121659.
[19] Chen, H., Zhang, B., Liang, X., and Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chinese J. Catal. 2022, 611-635.
[20] Wang, D., Jiang, X., Lin, Z., Zeng, X., Zhu, Y., Wang, Y., Gong, M., Tang, Y., and Fu, G. Ethanol‐Induced Hydrogen Insertion in Ultrafine IrPdH Boosts pH‐Universal Hydrogen Evolution. Small 2022, 2204063.
[21] Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Lei, B.-H., Singh, D. J., and Zheng, W. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 3645-3651.
[22] Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S. Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Adv. Energy Mater. 2020, 1903120.
[23] Yao, R.-Q., Zhou, Y.-T., Shi, H., Zhang, Q.-H., Gu, L., Wen, Z., Lang, X.-Y., and Jiang, Q. Nanoporous palladium–silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2019, 1379-1386.
[24] Sultan, S., Tiwari, J. N., Singh, A. N., Zhumagali, S., Ha, M., Myung, C. W., Thangavel, P., and Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 1900624.
[25] Xu, B., Zhang, Y., Li, L., Shao, Q., and Huang, X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022, 214388.
[26] Fan, J., Du, H., Zhao, Y., Wang, Q., Liu, Y., Li, D., and Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 13560-13583.
[27] Lu, L., Zou, S., and Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal. 2021, 6020-6058.
[28] Xia, Z. and Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 3265-3278.
[29] Guo, X., Hu, Z., Lv, J., Li, H., Zhang, Q., Gu, L., Zhou, W., Zhang, J., and Hu, S. Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 1288-1294.
[30] Lu, Y., Wang, J., Peng, Y., Fisher, A., and Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 1700919.
[31] Fan, J., Cui, X., Yu, S., Gu, L., Zhang, Q., Meng, F., Peng, Z., Ma, L., Ma, J.-Y., and Qi, K. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS nano 2019, 12987-12995.
[32] Jia, Y., Huang, T.-H., Lin, S., Guo, L., Yu, Y.-M., Wang, J.-H., Wang, K.-W., and Dai, S. Stable Pd–Cu hydride catalyst for efficient hydrogen evolution. Nano Lett. 2022, 1391-1397.
[33] Silalahi, R. P. B., Jo, Y., Liao, J.-H., Chiu, T.-H., Park, E., Choi, W., Liang, H., Kahlal, S., Saillard, J.-Y., and Lee, D. Hydride‐containing 2‐Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, e202301272.
[34] Koss, U., Hubkowska, K., Łukaszewski, M., and Czerwiński, A. Influence of temperature on hydrogen electrosorption into palladium-noble metal alloys. Part 3: Palladium–rhodium alloys. Electrochim. Acta 2013, 269-275.
[35] Štrbac, S., Smiljanić, M., and Rakočević, Z. Electrocatalysis of hydrogen evolution on polycrystalline palladium by rhodium nanoislands in alkaline solution. J. Electroanal. Chem. 2015, 115-121.
[36] Du, R., Jin, W., Hübner, R., Zhou, L., Hu, Y., and Eychmüller, A. Engineering multimetallic aerogels for pH‐universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 1903857.
[37] Li, L., Zhang, G., Wang, B., Yang, T., and Yang, S. Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 2090-2098.
[38] Zhong, M., Li, L., Zhao, K., He, F., Su, B., and Wang, D. PdCo alloys@ N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Sci. 2021, 14222-14233.
[39] Kaushik, P., Kaur, G., Chaudhary, G. R., and Batra, U. Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 149769.
[40] Su, L., Zhao, Y., Jin, Y., Fan, X., Liu, Z., and Luo, W. Dp orbital hybridization in RhSn catalyst boosts hydrogen oxidation reaction under alkaline electrolyte. J. Mater. Chem. A 2022.
[41] Xu, Q., Zhang, J., Zhang, H., Zhang, L., Chen, L., Hu, Y., Jiang, H., and Li, C. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 5228-5259.
[42] Yin, X., Sun, G., Su, L., Wang, L., and Shao, G. Surface roughening of nanoparticle-stacked porous NiCoO2@ C microflakes arrays grown on Ni foam for enhanced hydrogen evolution activity. Electrochim. Acta 2018, 226-233.
[43] Yang, L., Wang, N., Tao, B., Miao, F., Zang, Y., and Chu, P. K. Co (OH) 2 nanosheet arrays electrodeposited with palladium nanoparticles for hydrogen evolution reaction. J. Alloys Compd. 2019, 151775.
[44] Wang, G., Liu, J., Sui, Y., Wang, M., Qiao, L., Du, F., and Zou, B. Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis. J. Mater. Chem. A 2019, 14876-14881.
[45] Tung, C.-W., Huang, Y.-P., Hsu, C.-S., Chen, T.-L., Chang, C.-J., Chen, H. M., and Chen, H.-C. Tracking the in situ generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalytic hydrogen evolution. Catal. Sci. Technol. 2022, 3234-3239.
[46] Bugaev, A. L., Zabilskiy, M., Skorynina, A. A., Usoltsev, O. A., Soldatov, A. V., and van Bokhoven, J. A. In situ formation of surface and bulk oxides in small palladium nanoparticles. ChemComm 2020, 13097-13100.
[47] Sheng, W., Kattel, S., Yao, S., Yan, B., Liang, Z., Hawxhurst, C. J., Wu, Q., and Chen, J. G. Electrochemical reduction of CO 2 to synthesis gas with controlled CO/H 2 ratios. Energy Environ. Sci. 2017, 1180-1185.
[48] Zhu, W., Kattel, S., Jiao, F., and Chen, J. G. Shape‐controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 1802840.
[49] Yoshii, T., Nakatsuka, K., Kuwahara, Y., Mori, K., and Yamashita, H. Synthesis of carbon-supported Pd–Co bimetallic catalysts templated by Co nanoparticles using the galvanic replacement method for selective hydrogenation. RSC Adv. 2017, 22294-22300.
[50] Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., Piovano, A., Emerich, H., Soldatov, A. V., and Bugaev, L. A. In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catal. Today 2017, 119-126.
[51] Sun, H.-Y., Ding, Y., Yue, Y.-Q., Xue, Q., Li, F.-M., Jiang, J.-X., Chen, P., and Chen, Y. Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl. Mater. Interfaces 2021, 13149-13157.
[52] Shen, C., Chen, H., Qiu, M., Shi, Y., Yan, W., Jiang, Q., Jiang, Y., and Xie, Z. Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation. J. Mater. Chem. A 2022, 1735-1741.
[53] Liu, S., Zhang, H., Mu, X., and Chen, C. Surface reconstruction engineering of twinned Pd2CoAg nanocrystals by atomic vacancy inducement for hydrogen evolution and oxygen reduction reactions. Appl. Catal. B 2019, 424-429.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明