參考文獻 |
[1] Chu, S., Majumdar, A., Opportunities and challenges for a sustainable energy future. nature 2012, 294-303.
[2] Zang, M., Xu, N., Cao, G., Chen, Z., Cui, J., Gan, L., Dai, H., Yang, X., Wang, P., Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 5062-5069.
[3] Bandal, H. A., Jadhav, A. R., Tamboli, A. H., Kim, H., Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 2017, 253-262.
[4] Zou, X., Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 5148-5180.
[5] Shi, Y., Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 1529-1541.
[6] Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., Yan, Y., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 5848.
[7] Zhao, B., Xu, S., Carbon-Based Nanomaterials for Hydrogen Evolution Reaction, in Carbon-Based Nanomaterials for Energy Conversion and Storage: Applications in Electrochemical Catalysis. 2022, Springer. p. 123-146.
[8] Zeng, M., Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 14942-14962.
[9] Sun, F., Tang, Q., Jiang, D. e., Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal. 2022, 8404-8433.
[10] Indra, A., Song, T., Paik, U., Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv. Mater. 2018, 1705146.
[11] Shit, S., Chhetri, S., Jang, W., Murmu, N. C., Koo, H., Samanta, P., Kuila, T., Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 27712-27722.
[12] Wang, L., Guan, Y., Qiu, X., Zhu, H., Pan, S., Yu, M., Zhang, Q., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@ metal–organic framework. Chem. Eng. J. 2017, 945-955.
[13] Yang, H., He, X. W., Wang, F., Kang, Y., Zhang, J., Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem. 2012, 21849-21851.
[14] Dang, S., Zhu, Q. L., Xu, Q., Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2017, 1-14.
[15] Zhu, R., Ding, J., Yang, J., Pang, H., Xu, Q., Zhang, D., Braunstein, P., Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl. Mater. Interfaces 2020, 25037-25041.
[16] Zheng, F., Xia, H., Xu, S., Wang, R., Zhang, Y., Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Adv. 2016, 71767-71772.
[17] Chen, J., Zhou, H., Huang, Y., Yu, H., Huang, F., Zheng, F., Li, S., A 3D Co–CN framework as a high performance electrocatalyst for the hydrogen evolution reaction. RSC Adv. 2016, 42014-42018.
[18] Yang, H., Tang, Z., Wang, K., Wu, W., Chen, Y., Ding, Z., Liu, Z., Chen, S., Co@ Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Colloid Interface Sci. 2018, 18-26.
[19] Su, J., Yang, Y., Xia, G., Chen, J., Jiang, P., Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 14969.
[20] Morales-Guio, C. G., Stern, L. A., Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 6555-6569.
[21] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J. G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, J23.
[22] Li, H., Shin, K., Henkelman, G., Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 2018, 174705.
[23] Takehiro, N., Liu, P., Bergbreiter, A., Nørskov, J.K., Behm, R.J., Hydrogen adsorption on bimetallic PdAu (111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Phys. Chem. Chem. Phys. 2014, 23930-23943.
[24] Wang, Y., Balbuena, P. B., Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J. Phys. Chem. B 2005, 18902-18906.
[25] Zhang, R., Sun, Z., Feng, R., Lin, Z., Liu, H., Li, M., Yang, Y., Shi, R., Zhang, W., Chen, Q., Rapid adsorption enables interface engineering of PdMnCo alloy/nitrogen-doped carbon as highly efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 38419-38427.
[26] Wang, R., Jiang, L. Y., Feng, J. J., Liu, W. D., Yuan, J., Wang, A. J., One-pot solvothermal synthesis of PdCu nanocrystals with enhanced electrocatalytic activity toward glycerol oxidation and hydrogen evolution. Int. J. Hydrog. Energy 2017, 6695-6704.
[27] Skúlason, E., Tripkovic, V., Björketun, M. E., Gudmundsdóttir, S., Karlberg, G., Rossmeisl, J., Bligaard, T., Jónsson, H., Nørskov, J.K., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 18182-18197.
[28] Zhang, L., Chang, Q., Chen, H., Shao, M., Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 198-219.
[29] Jiang, T., Yu, L., Zhao, Z., Wu, W., Wang, Z., Cheng, N., Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution. Chem. Eng. J. 2022, 133525.
[30] Zhou, D., Usher, B.F., Deviation of the AlGaAs lattice constant from Vegard′s law. J. Phys. D 2001, 1461.
[31] Kibsgaard, J., Jaramillo, T. F., Besenbacher, F., Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13] 2− clusters. Nat. Chem. 2014, 248-253.
[32] Cheng, X., Xiao, B., Chen, Y., Wang, Y., Zheng, L., Lu, Y., Li, H., Chen, G., Ligand Charge Donation–Acquisition Balance: A Unique Strategy to Boost Single Pt Atom Catalyst Mass Activity toward the Hydrogen Evolution Reaction. ACS Catal. 2022, 5970-5978.
[33] Cao, D., Wang, J., Xu, H., Cheng, D., Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 2000924.
[34] Shi, Y., Zhao, Q., Li, J., Gao, G., Zhi, J., Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Appl. Catal. B 2022, 121216.
[35] Kuang, B., Song, W., Ning, M., Li, J., Zhao, Z., Guo, D., Cao, M., Jin, H., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 209-217.
[36] Yin, Y., Liu, X., Wei, X., Li, Y., Nie, X., Yu, R., Shui, J., Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2017, 30850-30861.
[37] Wang, S., Xu, Y., Fu, R., Zhu, H., Jiao, Q., Feng, T., Feng, C., Shi, D., Li, H., Zhao, Y., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nanomicro Lett. 2019, 1-16.
[38] Wang, X., Zhou, J., Fu, H., Li, W., Fan, X., Xin, G., Zheng, J., Li, X., MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 14064-14070.
[39] Lin, C. M., Hung, T. L., Huang, Y. H., Wu, K. T., Tang, M. T., Lee, C. H., Chen, C., Chen, Y., Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Phys. Rev. B 2007, 125426.
[40] Lopes, C. W., Cerrillo, J. L., Palomares, A. E., Rey, F., Agostini, G., An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Phys. Chem. Chem. Phys. 2018, 12700-12709.
[41] Kim, Y. T., Ohshima, K., Higashimine, K., Uruga, T., Takata, M., Suematsu, H., Mitani, T., Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed. 2006, 407-411.
[42] Kim, D. S., Kim, J. H., Jeong, I. K., Choi, J. K., Kim, Y. T., Phase change of bimetallic PdCo electrocatalysts caused by different heat-treatment temperatures: Effect on oxygen reduction reaction activity. J Catal 2012, 65-78.
[43] Wang, L., Zhang, J., Zhu, Y., Xu, S., Wang, C., Bian, C., Meng, X., Xiao, F. S., Strong metal–support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017, 7461-7465.
[44] Chen, A., Ostrom, C., Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 2015, 11999-12044.
[45] Li, T., Tang, Z., Wang, K., Wu, W., Chen, S., Wang, C., Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Int. J. Hydrog. Energy 2018, 4932-4941.
[46] Ghoshal, S., Zaccarine, S., Anderson, G. C., Martinez, M. B., Hurst, K. E., Pylypenko, S., Pivovar, B. S., Alia, S. M., ZIF 67 based highly active electrocatalysts as oxygen electrodes in water electrolyzer. ACS Appl. Energy Mater. 2019, 5568-5576.
[47] Li, X., Niu, Z., Jiang, J., Ai, L., Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Chem. A 2016, 3204-3209.
[48] Yuan, S., Pu, Z., Zhou, H., Yu, J., Amiinu, I. S., Zhu, J., Liang, Q., Yang, J., He, D., Hu, Z., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 2019, 472-480.
[49] Cai, Z. X., Wang, Z. L., Xia, Y. J., Lim, H., Zhou, W., Taniguchi, A., Ohtani, M., Kobiro, K., Fujita, T., Yamauchi, Y., Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem. 2021, 4797-4805.
[50] Zhong, M., Li, L., Zhao, K., He, F., Su, B., Wang, D., PdCo alloys@ N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Sci. 2021, 14222-14233.
[51] Bhowmik, T., Kundu, M.K., Barman, S., Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. ACS Catal. 2016, 1929-1941.
[52] Zhang, J., Liu, P., Wang, G., Zhang, P., Zhuang, X., Chen, M., Weidinger, I., Feng, X., Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 25314-25318.
[53] Kaushik, P., Kaur, G., Chaudhary, G.R., Batra, U., Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 149769.
[54] Wang, Z. L., Hao, X. F., Jiang, Z., Sun, X. P., Xu, D., Wang, J., Zhong, H. X., Meng, F. L. Zhang, X. B., C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 15070-15073.
[55] Cao, D., Wang, J., Xu, H., Cheng, D., Construction of Dual‐Site Atomically Dispersed Electrocatalysts with Ru‐C5 Single Atoms and Ru‐O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 2101163.
[56] Lu, B., Guo, L., Wu, F., Peng, Y., Lu, J. E., Smart, T. J., Wang, N., Finfrock, Y. Z., Morris, D., Zhang, P., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 631.
[57] Yin, J., Fan, Q., Li, Y., Cheng, F., Zhou, P., Xi, P., Sun, S., Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 14546-14549.
[58] Wang, Q., Cui, K., Liu, D., Wu, Y., Ren, S., Co–N Active Sites between Co Nanoparticles and N-Doped Carbon toward Remarkably Enhanced Electrocatalytic Oxygen Evolution and Hydrogen Evolution Reactions. Energy Fuels 2022, 1688-1696.
[59] Xing, L., Gao, H., Hai, G., Tao, Z., Zhao, J., Jia, D., Chen, X., Han, M., Hong, S., Zheng, L., Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. A 2020, 3203-3210. |