博碩士論文 110226019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.189.143.164
姓名 葉哲旭(CHE-HSU YEH)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以雷射測距儀製作古典吉他脈衝響應以應用於音色轉換
(Impulse response generation of classical guitars using laser displacement sensor for tone transfer)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨係在探討使用激發古典吉他後擷取的脈衝響應以及頻譜資料,製作出
能將兩把古典吉他音色轉換的轉移函數。我們使用不同激發方法以及感測器來擷取古
典吉他之脈衝響應以及頻譜資料,並使用頻譜相除法製做出能轉換音色的轉移函數,
並對兩把古典吉他完成音色轉換。研究中使用了三種激發方法來擷取古典吉他的脈衝
響應以及頻譜資料,分別是垂直面板撥絃法、氣球脈衝聲波法和喇叭播放白噪音法。
透過比較這些方法,我們得出了以下結論。
首先,比較了使用三種激發方法製作的轉移函數。結果顯示,這些方法都能成功
激發出古典吉他的音孔共振頻率。但在觀察頻譜時,氣球脈衝聲波法和喇叭播放白噪
音法出現了高頻噪聲過大和非目標還原音色的頻率峰值。由於垂直面板撥絃法的頻譜
呈現較低的噪聲,也較適合用於激發古典吉他。
其次,我們比較麥克風和雷射測距儀兩種感測器擷取的脈衝響應以及頻譜資料所
製作的轉移函數。在同樣使用垂直面板撥絃加總法時,不論是麥克風擷取還是雷射測
距儀製作的轉移函數,都能成功轉換古典吉他的音孔共振頻率峰值。但麥克風製作的
轉移函數在還原音孔共振頻率的能量上相對較弱,而雷射測距儀製作的轉移函數能夠
更好地還原音孔共振頻率。
最後,我們使用互相關和重疊積分的結果,來評估麥克風和雷射測距儀所製作的
轉移函數的音色還原效果。結果顯示,雷射測距儀所製作的轉移函數具有較高的互相
關性和重疊積分值,這表明雷射測距儀所製作的轉移函數能夠更準確地還原古典吉他
的音色。
摘要(英) The main objective of this study is to generate the transfer function capable of
transforming the timbre of two classical guitars using the impulse responses captured after
exciting the classical guitars. We employed different excitation methods and acoustic sensors
to capture the impulse response of the classical guitars and to generate the transfer function
for tone transformation between two guitars. Subsequently, we applied this transfer function
to achieve tone transformation between the two classical guitars. Three excitation methods
were used to capture the impulse response of the classical guitars: vertically plucking, balloon
pulse sound wave, and white noise excitation by loudspeaker. Through a comparison of these
methods, the following conclusions were drawn:
Firstly, a comparison was made between the transfer functions produced using the three
excitation methods. The results demonstrated that all these methods were successful in
exciting the air resonant frequencies of the classical guitars. However, when observing the
spectral data, the balloon pulse sound wave and white noise excitation by loudspeaker
exhibited excessive high-frequency noise. The vertically plucking method, on the other hand,
showed the lower noise levels and was more suitable for exciting the classical guitars.
Secondly, we compared the transfer functions created from the impulse response
captured by two different acoustic sensors: microphone and laser displacement sensor. The
transfer function generated by both methods can successfully transform the air resonant
frequency peaks of the classical guitars.
Finally, we evaluated the tone restoration by the transfer functions produced by the
microphone and the laser displacement sensor using the cross-correlation and the overlap
integral. The results indicated that the transfer function generated by the laser displacement
sensor exhibited higher cross-correlation and overlap integral values, suggesting that the use
of the laser displacement sensor could restore more accurately the tone of the classical guitars.
關鍵字(中) ★ 脈衝響應
★ 轉移函數
★ 古典吉他
★ 麥克風
★ 雷射測距儀
★ 音色還原
關鍵字(英) ★ impulse response
★ transfer function
★ microphone
★ classical guitar
★ laser displacement sensor
★ tone transformation
論文目次 目錄
摘要 v
ABSTRACT vi
誌謝 viii
目錄 ix
圖目錄 xi
表目錄 xiv
第一章、緒論 1
1-1 Impulse Response 1
1-1-1 IR的簡介 1
1-1-2 IR現今發展及應用 2
1-2 紀錄聲音之技術 5
1-2-1 雷射測距儀 5
1-2-2 麥克風 7
1-3 結論 8
第二章、IR之數學基礎 10
2-1 傅立葉轉換 10
2-2 卷積之數學原理 11
2-3 IR以及轉移函數h(t)之製作方法 12
2-3-1 脈衝聲波法 12
2-3-2 白噪音激發法 13
2-3-3 正弦掃描激發法 13
2-3-4 非白噪音激發法 14
2-3-5 轉移函數h(t) 14
2-4 互相關 15
2-5重疊積分 16
2-6 結論 17
第三章、古典吉他振動實驗 18
3-1 古典吉他架設 18
3-2 垂直面板撥絃裝置 20
3-3 脈衝聲波激發法 21
3-4 喇叭播放白噪音 24
3-5 決定量測點 25
3-5-1 雷射測距儀量測點 26
3-5-2 麥克風與古典吉他的量測距離與位置 26
3-6 結論 32
第四章、古典吉他音色轉移函數h(t)之製作 33
4-1 擷取Ramirez與Hand-made之古典吉他頻譜 33
4-1-1 以垂直面板撥絃量測之古典吉他頻譜 33
4-1-2 脈衝聲波製作之古典吉他頻譜 36
4-1-3 喇叭白噪音製作之古典吉他頻譜 37
4-1-4 製作古典吉他音色轉換之轉移函數h(t) 39
4-1-5 轉移函數h(t)時域與頻域比較 42
4-2 以轉移函數h(t)轉換後音色比較 44
4-2-1 麥克風製作之轉移函數h(t) 45
4-2-2 雷射測距儀製作之轉移函數h(t) 45
4-2-3 結論 47
4-3 不同感測器之轉換音色比較 48
4-3-1 還原頻譜放大 48
4-3-2 以互相關以及重疊積分比較還原效果 49
4-3-3 結論 51
第五章、結論與未來展望 52
5-1 結論 52
5-2 未來展望 53
參考文獻 54
參考文獻 參考文獻
1. San Martín, R., et al., Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics. The Journal of the Acoustical Society of America, 2013. 134(1): p. 275-284.
2. Meng, Q., et al. Impulse response measurement with sine sweeps and amplitude modulation schemes. in 2008 2nd International Conference on Signal Processing and Communication Systems. 2008. IEEE.
3. Rossing, T.D. and T.D. Rossing, Springer handbook of acoustics. 2014: Springer.
4. 傀儡, 讓 IR 把台北流行音樂中心搬進你的錄音室!, in 樂手巢. 2021/11/25.
5. Lloyd, T., et al., Listener preference towards a real and emulated violin. Journal of New Music Research, 2018. 47(3): p. 270-274.
6. Tones, S. Nad IR Impulse Response Loader.
7. Fricke, J. and K. Lorenz-Kierakiewitz, Room Impulse Response Measurements in Ten Churches of Rome: Hörsamkeit Intelligibility and Possible Suitable Positions for Performances of Church Music. AIA-DAGA 2013 Merano, 2013: p. 2079-2082.
8. Bradley, J., Auditorium acoustics measures from pistol shots. The Journal of the Acoustical Society of America, 1986. 80(1): p. 199-205.
9. Duprat, F., et al., The Acoustic Impulse Response Method for Measuring the Overall Firmness of Fruit. Journal of Agricultural Engineering Research, 1997. 66: p. 251-259.
10. Suministrado, D.C., Acoustic impulse response of young coconut (Cocos nucifera L.) fruits in relation to maturity. Agricultural Engineering International: CIGR Journal, 2021. 23(1): p. 266-273.
11. Bayati, M.R., et al. Evaluation and comparison firmness of “Golab Apple” with two methods of acoustic and penetration during cold storage. 2016.
12. Atre, M.P. and S.D. Apte, Comparison of Impulse Response Methods for Guitar Modeling. IJSEI, 2018. 7(75).
13. Kothe, R.S., Monophonic Musical Instrument Sound Classification Using Impulse Response Modeling. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021. 12(5): p. 1667-1672.
14. Martínez, S.N. Measurement of the Impulse Response of the Guitar to Extract Timbre Features. 2019.
15. Atre, M.P. Classification of plucking style and plucking expression of an acoustic guitar notes based on impulse response. in International Conference on Mathematical and Statistical Physics, Computational Science, Education, and Communication (ICMSCE 2022). 2023. SPIE.
16. Havelock, D., S. Kuwano, and M. Vorländer, Handbook of signal processing in acoustics. Vol. 1. 2008: Springer.
17. Skrodzka, E.B., et al., Modal parameters of two incomplete and complete guitars differing in the bracing pattern of the soundboard. The Journal of the Acoustical Society of America, 2011. 130 4: p. 2186-94.
18. MICRO-EPSILON, Catalog optoNCDT laser sensors (Laser displacement sensors - triangulation).
19. MICRO-EPSILON, Instruction Manual optoNCDT 2300.
20. Yudaningtyas, E., ELECTRET CONDENSER MICROPHONE AS SENSOR IN ARTERIAL PULSE RECORDING DEVICE. International Journal of Geomate, 2020. 19.
21. Thompson, S.C., Microphones: A bit of history. The Journal of the Acoustical Society of America, 2023.
22. Microphones, R., Directional Condenser Microphone NTG1 datasheet.
23. Gallagher, T.A., A.J. Nemeth, and L. Hacein-Bey, An introduction to the Fourier transform: relationship to MRI. American journal of roentgenology, 2012.
24. Kreyszig, E., Advanced Engineering Mathematics. 10th ed. 2011/8/16: Wiley.
25. Bracewell, R.N. and R.N. Bracewell, The Fourier transform and its applications. Vol. 31999. 1986: McGraw-Hill New York.
26. Hunt, B., A matrix theory proof of the discrete convolution theorem. IEEE Transactions on Audio and Electroacoustics, 1971. 19(4): p. 285-288.
27. Cochran, W.T., et al., What is the fast Fourier transform? Proceedings of the IEEE, 1967. 55(10): p. 1664-1674.
28. Chaigne, A. and J. Kergomard, Acoustics of musical instruments. 2016: Springer.
29. Adriaensen, F. Acoustical impulse response measurement with ALIKI. in Linux Audio Conference Proceedings. 2006.
30. Türckheim, F., et al. Novel impulse response measurement method for stringed instruments. in Proceedings of 20th International Congress on Acoustics, ICA. 2010.
31. Dirac, P.A.M., The principles of quantum mechanics. 1981: Oxford university press.
32. Ramachandran, K.I., G. Deepa, and K. Namboori, Computational Chemistry and Molecular Modeling: Principles and Applications. 2008: Springer Berlin Heidelberg.
33. Jansson, E., B. Niewczyk, and L. Fryden, On the body resonance C3 and its relation to the violin construction. J. Catgut Acoust. Soc, 1997. 3: p. 9-14.
34. 蘇冠丞, 奈米精密度雷射測距儀量測與比較吉他音色與音量之研究. 臺灣碩博士論文知識加值系統, 2021.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2023-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明