博碩士論文 110226062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.128.199.88
姓名 林韋志(Wei-Chih Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以雷射測距儀量測古典吉他之音色
(Timbre measurement of classical guitars using laser displacement sensor)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 吉他產生的音色主要取決於其腔體的振動特性(也就是吉他腔體的自然頻率和模態形狀),藉由激發琴弦的振動傳遞至琴橋,最後帶動整個腔體的振動,並由音孔發出聲音。 從上述吉他發出聲音的過程中可以發現不論是弦的材質、張力,或是面板使用的木頭種類、面板厚度、力木結構等等,都會對吉他的音色造成影響,因此,在本研究中,我們將針對吉他腔體的共振頻率、不同張力的吉他弦對於音色的影響、不同位置撥弦對於音色的影響這三大主軸進行討論。
本研究最終的目標是以客觀的方式建立了一套古典吉他音色定義的方法。我們利用雷射測距儀測量吉他面板的振動,建立一套安全的非接觸式量測。首先透過氣球爆破實驗瞭解到每把吉他的自然頻率,並且設計了撥弦裝置,結合推拉力計和電控移動平台,建立了一套可重複且具定量性的撥弦系統。我們分析了撥弦位置和琴弦張力對音色特徵的影響,結果顯示,靠近下弦枕的撥弦位置會產生較強的Air resonance,和較低的弦音與Air resonance強度比例。另外,不同張力的琴弦對音色特徵的影響也會因吉他而有所不同。由於弦音、air resonance是古典吉他最強的兩個發音頻率,我們因此以Air resonance的頻率、Air resonance的品質因子、弦音與Air resonance強度比例為三個主要參數,構建了古典吉他音色空間的三維模型。透過計算兩點間的歐氏距離,我們能夠量化音色的相似性,並客觀評估和比較不同吉他的音色差異。本研究的結果為古典吉他音色的提供了一個量化的方法。
摘要(英) The tone produced by the guitar primarily depends on the vibration characteristics of its soundboard, which includes the natural frequencies and mode shapes of the guitar cavity. Through the excitation of string vibrations, these vibrations are transmitted to the bridge, subsequently driving the overall cavity vibration and resulting in sound emission from the sound hole. It can be observed from the guitar sound production process that various parameters such as string material, tension, wood species used for the soundboard, soundboard thickness, and bracing structure, have an impact on the guitar′s tone. Therefore, in this study, three main aspects are investigated the resonant frequencies of the guitar cavity, the influence of guitar strings with different tensions on the tone, and the impact of plucking positions on the tone.
The main goal of this study is to establish an objective method for defining the timbre of classical guitars. We employ a laser displacement sensor to measure the vibrations of the guitar soundboard. This approach provides a safe and non-contact measurement setup.
Through the balloon burst experiments, we obtain the spectrum of the natural frequencies of each guitar. Furthermore, we design a plucking device that integrates a tension gauge and an electronically controlled moving platform, creating a reproducible and quantitative measurement system.
Moreover, we analyze the influence of the plucking positions and string tension on timbre characteristics. The results indicate that plucking positions near the bridge generate stronger air resonances and lower ratios of string tone to air resonance intensity. Additionally, the impact of different string tensions on timbre characteristics may vary among guitars.
Since the intensity of string tone and the air resonance are the two strongest peaks in the spectrum of eh guitar, we construct a three-dimensional model of the classical guitar timbre space based on air resonance amplitude, quality factor of air resonance, and the amplitude ratio of the string tone to the air resonance . By calculating the Euclidean distance between two coordinates in the three-dimensional model, we can quantify the similarity of tones and compare the timbral differences among different guitars. The findings of this study provide a quantitative approach for investigating classical guitar timbre.
關鍵字(中) ★ 古典吉他
★ 音色
★ 空氣共振
★ 聲響頻譜
★ 雷射測距儀
關鍵字(英) ★ Classical Guitar
★ Timbre
★ Air resonance
★ Acoustic Spectrum
★ Laser Displacement Sensor
論文目次 摘要 ii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xii
第一章、 緒論 1
1-1 前言 1
1-2 樂器音色 3
1-2-1 音調和諧性(Tonal Consonance) 3
1-2-2 多維感知音色空間(Multidimensional Perceptual Scaling of Musical Timbres) 3
1-2-3 三刺激音色模型(Tristimulus timbre model) 5
1-3 吉他聲響時域上表現 7
1-3-1 頻譜包絡(Spectral envelope) 8
1-3-2 瞬態(Transient) 9
1-3-3 衰減(Decay) 9
1-4 吉他的聲響頻譜 10
1-4-1 諧波 11
1-4-2 腔體振動 13
1-5 結論 15
第二章、 吉他結構與聲學 17
2-1 吉他基本構造 18
2-1-1 吉他各部位簡介 18
2-1-2 吉他力木(bracing)結構 21
2-1-3 吉他琴弦 23
2-2 吉他的聲學原理 25
2-2-1 吉他的發聲原理 25
2-2-2 基音與泛音 25
2-3 結論 28
第三章、 古典吉他面板振動之量測 29
3-1 實驗架構 29
3-2 撥弦裝置介紹 32
3-3 實驗步驟 34
3-3-1 量測點與激發點 34
3-3-2 求施力原點並決定各條件下之位移、施力及作功 34
3-4 結論 37
第四章、 實驗結果分析 38
4-1 撥弦實驗結果分析 38
4-1-1 吉他腔體的自然頻率 38
4-1-2 狼音 40
4-1-3 音孔共振 41
4-1-4 拍頻 43
4-2 利用Air resonance定義音色 48
4-2-1 撥弦位置對共振強度的影響 49
4-2-2 古典吉他音色空間 56
4-3 結論 60
第五章、 結論與未來展望 62
5-1 結論 62
5-2 未來展望 63
附錄1:A吉他撥一~六弦頻譜 65
附錄2:B吉他撥一~六弦頻譜 67
附錄3:撥弦時的位移、施力及作功 69
參考文獻 73
參考文獻 [1] "ANSI (1960/1994) Psychoacoustic terminology: timbre, New York."
[2] C. Traube and M. Lavoie, "The guitar as an extension of the voice ‐ Phonetic gestures underlying guitar timbre perception and description," The Journal of the Acoustical Society of America, vol. 123, pp. 3657-3657, 2008.
[3] 蘇冠丞, "奈米精密度雷射測距儀量測與比較吉他音色與音量之研究," Measurement and comparison of timbre and sound level of guitars using displacement sensor with nanometer precision, 中央大學光電系碩士論文, 2021.
[4] E. V. Jansson, "Fundamentals of guitar tone," The Journal of the Acoustical Society of America, vol. 71, pp. S8-S9, 2005.
[5] N. H. Fletcher and T. D. Rossing, The physics of musical instruments Second edition. New York, New York: Springer, 1998.
[6] E. V. Jansson, "A study of acoustical and hologram interferometric measurements of the top plate vibrations of a guitar," Acta Acustica united with Acustica, vol. 25, pp. 95-100, 1971.
[7] M. Czajkowska, "Analysis of classical guitars′ vibrational behavior based on scanning laser vibrometer measurements," 2012, vol. 1457, pp. 336-343.
[8] R. E. Ross and T. D. Rossing, "Plate vibrations and resonances of classical and folk guitars," The Journal of the Acoustical Society of America, vol. 65, pp. S72-S72, 2005.
[9] R. Plomp and W. J. M. Levelt, "Tonal consonance and critical bandwidth," The Journal of the Acoustical Society of America, vol. 384, pp. 548-60, 1965.
[10] 陳秋燕, "古典吉他觸絃與音色之研究," Study of Timbre with Plucking the String of Classical Guitar., 中央大學光電系碩士論文, 2019.
[11] J. M. Grey, "Multidimensional perceptual scaling of musical timbres," The Journal of the Acoustical Society of America, vol. 61, pp. 1270-1277, 1977.
[12] M. Mannone et al., "Color and Timbre Gestures: An Approach with Bicategories and Bigroupoids," Mathematics, vol. 10, p. 663, 2022.
[13] S. S. Stevens, "Perceived Level of Noise by Mark VII and Decibels (E)," The Journal of the Acoustical Society of America, vol. 51, pp. 575-601, 2005.
[14] H. F. Pollard and E. V. Jansson, "A Tristimulus Method for the Specification of Musical Timbre," Acta Acustica united with Acustica, vol. 51, pp. 162-171, 1982.
[15] R. Segnini, Timbrescape: a Musical Timbre and Structure Visualization Method using Tristimulus Data. 2006.
[16] S. Ystad and T. Voinier, "A Virtually Real Flute," Computer Music Journal, vol. 25, pp. 13-24, 2001.
[17] C. Saitis et al., "Effect of task constraints on the perceptual evaluation of violins," Acta Acustica United With Acustica, vol. 101, pp. 382-393, 2015.
[18] C. Traube, "An interdisciplinary study of the timbre of the classical guitar," 2004.
[19] Wikipedia. Envelope (music) URL
[20] M. Vail, The synthesizer: a comprehensive guide to understanding, programming, playing, and recording the ultimate electronic music instrument. Oxford University Press, 2014.
[21] J. Schneider, The Contemporary Guitar. Rowman & Littlefield Publishers, 2015.
[22] J. Taylor, Tone Production on the Classical Guitar. London: Musical New Services Ltd., 1978.
[23] J. W. Goodman, Introduction to Fourier optics / Joseph W. Goodman, 3rd (Fourier optics). Englewood, Colo: Roberts & Co., 2005.
[24] G. Cuzzucoli and M. Garrone, Classical guitar design. Cham: Springer International Publishing, 2020.
[25] C. Traube and J. O. Smith, "Extracting the fingering and the plucking points on a guitar string from a recording," IEEE,
[26] C. Traube and P. Depalle, Timbral analogies between vowels and plucked string tones. 2004, pp. iv-293.
[27] H. Suzuki, "Vibration and sound radiation of a piano soundboard," The Journal of the Acoustical Society of America, vol. 77, pp. S33-S33, 2005.
[28] J. C. S. Lai and M. A. Burgess, "Radiation efficiency of acoustic guitars," The Journal of the Acoustical Society of America, vol. 88, pp. 1222-1227, 1990.
[29] 馮培瑜, "以波導錯位提升滑輪式環形共振腔之品質因子 The enhancement of quality factor of pulley-type micro-ring resonator with offset ", Enhancement of quality factor of pulley-type micro-ring resonator with offset, 中央大學光電系碩士論文, 2016.
[30] R. M. French, Engineering the Guitar: Theory and Practice, 1st. New York: Springer Science + Business Media, 2009.
[31] "600 SILVER-PLATED." http://www.hannabach.com/en/strings/600-silver-plated (accessed.
[32] Instruction Manual optoNCDT 2300.
[33] S. Benacchio et al., "Active control and sound synthesis—two different ways to investigate the influence of the modal parameters of a guitar on its sound," The Journal of the Acoustical Society of America, vol. 139, pp. 1411-1419, 2016.
[34] T. Gore, "Wood for guitars," The Journal of the Acoustical Society of America, vol. 129, pp. 2519-2519, 2011.
[35] A. Chaigne and J. Kergomard, Acoustics of Musical Instruments, 1st 2016. (Modern Acoustics and Signal Processing). New York: Springer New York, 2016.
[36] T. D. Rossing, Springer handbook of acoustics, 2nd. New York, NY: Springer New York, 2014.
[37] H. J. Pain, The physics of vibrations and waves, 2d. London: Wiley, 1976.
[38] V. Bucur, Handbook of materials for string musical instruments. Cham: Springer International Publishing, 2016.
[39] T. D. Rossing, The science of string instruments. New York, NY: Springer Science+Business Media, LLC, 2010.
[40] R. Bader, "Computational Mechanics of the Classical Guitar," Computational Mechanics of the Classical Guitar, pp. 1-183, 2005.
[41] E. Gorrostieta-Hurtado, "Vibration analysis in the design and construction of an acoustic guitar," International Journal of the Physical Sciences, vol. 7, 2012.
[42] E. Jansson, "ACOUSTICS FOR VIOLIN AND GUITAR MAKERS," 2003,
[43] O. Christensen and B. B. Vistisen, "Simple model for low‐frequency guitar function," The Journal of the Acoustical Society of America, vol. 68, pp. 758-766, 1980.
[44] "Plucking Location and Timbre of a Guitar," International scholastic journal of science, vol. 15, pp. 1-4, 2022.
[45] C. Traube et al., Indirect Acquisition of Instrumental Gesture Based on Signal, Physical and Perceptual Information. 2003, pp. 42-48.
[46] C. Traube and J. Smith, "Estimating the plucking point on a guitar string," 2022.
[47] Y. C. Cheng et al., "Photonic Crystal Cavity With Double Heterostructure in GaN Bulk," IEEE Photonics Journal, vol. 5, pp. 2202606-2202606, 2013.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2023-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明