參考文獻 |
[1] Young, C. EUV: Enabling cost efficiency, tech innovation and future industry growth. 2019.
[2] 經濟部技術處, 2020/2021年產業技術白皮書(產業篇). 2020.
[3] 曲建仲, FinFET 全面攻佔 iPhone!五分鐘讓你看懂 FinFET. 2015: TechNews. p. https://reurl.cc/DAbbzj.
[4] 施錫龍;丁永強;戴寶通, 極紫外光微影技術簡介, in 電子月刊. 2010. p. 114.
[5] 李正中, 薄膜光學與鍍膜技術. 9 ed. 2020: 藝軒圖書.
[6] 先進光學曝光系統與極紫外光(EUV)就看這一篇!. 2016: Ansforce. p. https://reurl.cc/M8M2KX.
[7] 台積電拚5奈米關鍵技術!影片直擊極紫外光EUV微影技術是怎麼運作的, 蕭閔云, Editor. 2020: 數位時代BUSINESS NEXT.
[8] Saedi, M., et al., Effect of rubidium incorporation on the optical properties and intermixing in Mo/Si multilayer mirrors for EUV lithography applications. Applied Surface Science, 2020. 507.
[9] Louis, E., et al., Nanometer interface and materials control for multilayer EUV-optical applications. Progress in Surface Science, 2011. 86(11-12): p. 255-294.
[10] Louis, E., et al. Progress in Mo/Si multilayer coating technology for EUVL optics. in Emerging Lithographic Technologies IV. 2000. SPIE.
[11] 戴宏穎, 使用離子束濺鍍系統降低EUV反射鏡鉬矽界面擴散層厚度之研究, in 光電科學與工程學系. 2022, 國立中央大學: 桃園縣. p. 129.
[12] Bajt, S.a., Improved reflectance and stability of Mo-Si multilayers. Optical Engineering, 2002. 41(8).
[13] Vinogradov, A. and B.Y. Zeldovich, X-ray and far uv multilayer mirrors: principles and possibilities. Applied optics, 1977. 16(1): p. 89-93.
[14] Optics, C.T.C.F.X.-r. 不同材料在極紫外光波段之折射率及吸收係數的分布情況. Available from: http://www-cxro.lbl.gov/.
[15] Stearns, D.G., R.S. Rosen, and S.P. Vernon. High-performance multilayer mirrors for soft x-ray projection lithography. in Multilayer Optics for Advanced X-Ray Applications. 1992. SPIE.
[16] Yan, P.-y., E. Spiller, and P. Mirkarimi, Characterization of ruthenium thin films as capping layer for extreme ultraviolet lithography mask blanks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6): p. 1859-1866.
[17] Stuik, R., et al., Peak and integrated reflectivity, wavelength and gamma optimization of Mo/Si, and Mo/Be multilayer, multielement optics for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999. 17(6): p. 2998-3002.
[18] Frank, F.C. and J.H. van der Merwe, One-dimensional dislocations. I. Static theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949. 198: p. 205 - 216.
[19] Stranski, I.N. and L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1937. 71: p. 351-364.
[20] Liang, T., et al., Growth and printability of multilayer phase defects on extreme ultraviolet mask blanks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6): p. 2098-2103.
[21] 伍秀菁, 汪., 林美吟, 真空技術與應用. 1 ed. 2001: 國科會精儀中心.
[22] Bajt, S., D.G. Stearns, and P.A. Kearney, Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics, 2001. 90(2): p. 1017-1025.
[23] Andreev, S., et al., The microstructure and X-ray reflectivity of Mo/Si multilayers. Thin Solid Films, 2002. 415(1-2): p. 123-132.
[24] Khatri, H. and S. Marsillac, The effect of deposition parameters on radiofrequency sputtered molybdenum thin films. Journal of Physics: Condensed Matter, 2008. 20(5).
[25] 許宏華, et al., Effect of dc sputtering power on structure and electrical properties of Mo thin films. 中正嶺學報, 2014. 43(2): p. 61-68.
[26] Guo, L., et al., Effects of sputtering power on structure and property of Mo films deposited by DC magnetron sputtering. High Power Laser and Particle Beams, 2011. 23.
[27] Filatova, E.O., et al., Inhibition of chemical interaction of molybdenum and silicon in a Mo/Si multilayer structure by the formation of intermediate compounds. Phys Chem Chem Phys, 2021. 23(2): p. 1363-1370.
[28] Braun, S., et al., Mo/Si Multilayers with Different Barrier Layers for Applications as Extreme Ultraviolet Mirrors. Japanese Journal of Applied Physics, 2002. 41(Part 1, No. 6B): p. 4074-4081.
[29] Windt, D.L., IMD—Software for modeling the optical properties of multilayer films. Computers in Physics, 1998. 12(4).
[30] SEN research 4.0. Available from: https://reurl.cc/mLZnlV.
[31] 布拉格繞射示意圖. Available from: https://reurl.cc/nDl4pl.
[32] Windt, D.L., IMD Installation Guide & User’s Manual. 2013.
[33] 原子力顯微鏡原理. Available from: https://reurl.cc/nDl42D.
[34] Zhao, J., et al., Influence of deposition rate on interface width of Mo/Si multilayers. Thin Solid Films, 2015. 592: p. 256-261.
[35] 張宏濱, 磁控濺鍍製備極紫外光高反射率多層膜反射鏡, in 電子工程系碩士班. 2015, 明新科技大學: 新竹縣. p. 50.
[36] Li, Y., et al., Thermal and stress studies of the 30.4nm Mo/Si multilayer mirror for the moon-based EUV camera. Applied Surface Science, 2014. 317: p. 902-907.
[37] 黃信哲, 應用於極紫外光微影之高反射率多層膜反射鏡設計、製作與特性量測, in 工學院加速器光源科技與應用碩士學位學程. 2014, 國立交通大學: 新竹市. p. 66.
[38] Schubert, E., et al., Ion beam sputter deposition of soft x-ray Mo∕ Si multilayer mirrors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005. 23(3): p. 959-965.
[39] Zuyev, S.Y., et al., Mo/Si Multilayer Mirrors with B4C and Be Barrier Layers. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019. 13(2): p. 169-172.
[40] Rauschenbach, B., Ion beam assisted deposition—A processing technique for preparing thin films for high-technology applications. Vacuum, 2002. 69(1-3): p. 3-10.
[41] Yakshin, A., et al., Determination of the layered structure in Mo/Si multilayers by grazing incidence X-ray reflectometry. Physica B: Condensed Matter, 2000. 283(1-3): p. 143-148.
[42] Bozorg-Grayeli, E., et al., Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics. Journal of Applied Physics, 2012. 112(8).
[43] Maury, H., et al., Interface characteristics of Mo/Si and B4C/Mo/Si multilayers using non-destructive X-ray techniques. Surface Science, 2007. 601(11): p. 2315-2322.
[44] Patelli, A., et al., Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering. Applied surface science, 2004. 238(1-4): p. 262-268.
[45] Yang, H., et al., Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers. Coatings, 2021. 11(6). |