博碩士論文 111226064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.224.32.86
姓名 曾禹翔(Yu-Shiang Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用電控膽固醇液晶傾斜螺旋態結構調制偏振體積光柵之光學特性。
(Electrically controllable optical properties of polarization volume gratings based on the oblique helicoidal state of chiral nematics)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文研究分為三大主題,第一主題是水平配向之傾斜螺旋態膽固醇液晶於不同溫度下的反射頻譜變化,以及其結構變化與操作電壓變化。在此部分研究中,固定材料比例、液晶盒厚度和配向膜種類,僅改變溫度一參數,溫度對於傾斜螺旋態膽固醇液晶的特性影響顯著。產生傾斜螺旋態結構需添加液晶二聚體,此可降低整體液晶混合物的彎曲彈性係數(K33),而改變溫度(升溫)會使其彎曲彈性係數(K33)上升,使傾斜螺旋態的特性越不明顯。最後透過4×4貝里曼矩陣計算反射頻譜之理論值並與實驗量測到的反射頻譜進行擬合,最後透過擬合得到其螺旋週期以及錐角。第二主題為偏振體積光柵之傾斜角、繞射角、繞射效率及史托克參數(S3)量測,探討相同x方向週期,並改變膽固醇液晶的螺距使其傾斜角改變,進而改變繞射角;最後探討Q參數對於布拉格光柵偏振選擇性影響。第三主題為前兩主題的結合,製作傾斜態膽固醇液晶之偏振體積光柵(Oblique Helicoidal State of Polarization Volume Grating, OHPVGs),預計透過傾斜螺旋態膽固醇液晶可電控調制螺距長度的特性製作出可電控調制繞射角之光柵,但實驗上卻無此現象,本論文對此現象的推測為Q值太小,故繞射角與螺距長度及傾斜角無關,只與波長及光柵週期及液晶折射率相依。此外,本論文研究仍有發現OHPVGs可解決施加電場下之水平配向之傾斜螺旋態膽固醇液晶反射頻譜中短波長上升之問題,本論文第六章提出解決辦法以及未來可繼續研究之方向。
摘要(英) The research topic in this thesis is divided into three main parts. The first topic focuses on the reflection spectra and structural changes of homogeneous alignment of oblique helicoidal state of chiral nematics at different temperatures, as well as the variations in the operating voltage. In this study, the concentration of the adopted materials, liquid crystal (LC) cell gap, and alignment films are kept invariant, while only the temperature parameter is varied. The temperature has a significant impact on the characteristics of the oblique helicoidal state of chiral nematics. The formation of an oblique helicoidal state requires the addition of LC dimers, which reduces the overall bend elastic constant (K33) of the LC mixture. The bend elastic constant (K33) increases with the temperature, making the characteristics of the oblique helicoidal state less prominent. The Berreman 4×4 matrix is used to fit the measured reflection spectra, and the pitch length and cone angle are obtained through the fitting process. The second topic involves the measurements of the slanted angle, diffraction angle, diffraction efficiency, and Stokes parameter (S3) of the obtained polarization volume gratings (PVGs). It explores the variations of the slanted angle by adjusting the pitch length of chiral nematics with the same period along the x-directional, which in turn affects the diffraction angle. Finally, the Q parameter′s impact on Bragg volume gratings′ polarization selectivity is examined. The third topic involves the combination of the first two topics, aiming to fabricate Oblique Helicoidal State of Polarization Volume Gratings (OHPVGs). The goal is to achieve electrically controllable modulation of the grating′s diffraction angle by manipulating the pitch length through the use of oblique helicoidal state of chiral nematics. However, the experimental results did not show this phenomenon. The thesis speculates that the small Q value prevents the diffraction angle from being related to the pitch length and slanted angle, and instead, it depends on the wavelength and the grating′s periodicity and refractive index of LCs. In addition, this study also found that OHPVGs can address the issue of a short-wavelength increase in the reflection spectrum of homogeneous alignment of the oblique helicoidal state of chiral nematics under an applied electric field. Chapter 6 of this thesis proposes some solutions and outlines potential research directions in the future.
關鍵字(中) ★ 液晶 關鍵字(英) ★ liquid crystal
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 X
符號說明 XVIII
第一章 緒論 1
§1-1前言 1
§1-2研究動機 1
§1-3文獻回顧 2
§1-4論文架構 4
第二章 液晶簡介 6
§2-1液晶介紹 6
§2-2液晶分類 7
§2-2-1棒狀液晶 8
§2-2-2圓盤狀液晶 13
§2-3液晶之光電特性 14
§2-3-1光學異向性(Optical Anisotropy, ∆n) 14
§2-3-2介電異向性(Dielectric Anisotropy, ∆ε) 18
§2-3-3連續彈性體理論 19
§2-3-4溫度對向列型液晶的影響 20
§2-3-5 Fréedericksz Transition 21
第三章 實驗相關理論 22
§3-1 傾斜螺旋態結構(Oblique Helicoidal State) 22
§3-2液晶二聚體(Liquid Crystal Dimer) 23
§3-3偏振 24
§3-3-1線偏振與圓偏振 26
§3-3-2 史托克斯向量Stokes Vector 26
§3-4布拉格體積光柵(Volume Bragg Grating) 27
§3-4-1偏振體積光柵 27
§3-5干涉(Interference) 30
§3-5-1雙圓偏振干涉 31
§3-5-2雙線偏振干涉 33
§3-6 偶氮染料(Azo Dye) 35
§3-6-1 光激發同素異構化(Photo-isomerization) 35
§3-6-2正力矩效應(Positive Torque Effect) 36
§3-6-3負力矩效應(Negative Torque Effect) 37
第四章 實驗方法與流程 38
§4-1 材料介紹 38
§4-1-1向列型液晶 38
§4-1-2手性分子 39
§4-1-3液晶二聚體(Liquid Crystal Dimer) 40
§4-1-4 Brilliant Yellow (BY) 40
§4-2液晶基板配向與液晶盒製作 41
§4-3實驗架設 43
§4-3-1液晶空盒間隙之量測 43
§4-3-2 BY光配向膜之光配向製程(製作偏振體積光柵) 45
§4-3-3偏振體積光柵(PVG)繞射光之史托克參數(Stoke Parameter)量測 46
§4-3-4偏光顯微鏡與樣品觀測 47
第五章 實驗結果與討論 49
§5-1 電控傾斜螺旋態之膽固醇液晶 49
§5-1-1施加交流電場對傾斜螺旋態之膽固醇液晶反射頻譜之影響 49
§5-1-2溫度對傾斜螺旋態膽固醇液晶之影響 59
§5-2 正型膽固醇液晶之偏振體積光柵光學特性量測 70
§5-2-2 Q參數(Q parameter) 80
§5-3 傾斜螺旋態膽固醇液晶之偏振體積光柵 84
§5-3-1 施加電壓於不同溫度下之OHPVGs 84
§5-3-2 OHPVGs之傾斜角量測 94
§5-3-3 OHPVGs繞射光光學特性 98
第六章 結論與未來展望 101
§6-1結論 101
§6-2未來展望 103
參考文獻 105
參考文獻 [1] J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics,” Adv. Mater. 27, 3014-3018 (2015).
[2] Y. S. Weng, D. M. Xu, Y. I. Zhang, X. H. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24, 17746-17759 (2016).
[3] K. Yin, T. Zhan, J. H. Xiong, Z. Q He, and S. T. Wu, “Polarization Volume Gratings for Near-Eye Displays and Novel Photonic Devices” Crystals 10(7), 561 (2020).
[4] J. H. Xiong, R. Chen, and S. T Wu, “Device simulation of liquid crystal polarization gratings,” Opt. Express 27, 18102-18112 (2019).
[5] Y. H. Lee, Z. Q. He, and S. T. Wu, “Optical properties of reflective liquid crystal polarization volume gratings,” J. Opt. Soc. Am. B 36, D9-D12 (2019).
[6] K. Yin, Y. H Lee, Z. Q He, and S. T Wu, “Stretchable, flexible, rollable, and adherable polarization volume grating film,” Opt. Express 27, 5814-5823 (2019).
[7] F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[8] Lehman, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[9] 松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出 版 (1996).
[10] https://highscope.ch.ntu.edu.tw/wordpress/?p=1577
[11] https://ir.nctu.edu.tw/bitstream/11536/78524/4/555904.pdf
[12] S. Chandrasekhar, C. Frank, J. D. Litster, W. H. De Jeu, and L. Lei, “Liquid Crystals of Disc-Like Molecules and Discussion,” the Royal Society 309(1507), 93-103 (1983).
[13] V. Fréedericksz and A. Repiewa, “Theoretisches und experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten,” Zeitschrift fur Physik 42, 532 (1927).
[14] P. G. de Gennes, “Calcul de la distorsion d’une structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163-165 (1968).
[15] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281-282 (1968).
[16] O. D. Lavrentovich, “Electromagnetically tunable cholesterics with oblique helicoidal structure [Invited],” Opt. Mater. Express 10, 2415-2424 (2020).
[17] C. T. Imrie, R. Walker, J. M. D. Storey, E. Gorecka, and D. Pociecha, “Liquid Crystal Dimers and Smectic Phase From The Intercalated to the Twist-Bend,” Crystals 12(8), 1245 (2022).
[18] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96, 062704 (2017).
[19] J. R. Mandle, “A Ten-Year Perspective on Twist-Bend Nematic Materials,” Molecules 27(9), 2689-2709 (2022).
[20] G. Yu, and M. R. Wilson, “All-atom simulations of bent liquid crystal dimers: the twist-bend nematic phase and insights into conformation chirality,” Soft Matter 18, 3087-3096 (2022).
[21] A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley (2002).
[22] Y. C. Gu, Y. S. Weng, R. Wei, Z. W. Shen, C. Wang, L. X. Zhang, and Y. N. Zhang, “Holographic Waveguide Display With Large Field of View and High Light Efficiency Based on Polarized Volume Holographic Grating,” IEEE Photonics Journal 14(1), 1-7 (2022).
[23] J. Xiong and S. T. Wu, “Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications,” eLight 1, 3 (2021).
[24] B. E. A Saleh, and M. M. Teich, “Fundamental of Photonics Part one: Optics,” Wiley (2019).
[25] L. Z. Cai and X. L. Yang, “Interference of circularly polarized light: contrast and application in fabrication of three-dimensional periodic microstructures,” Opt. Laser Technol 34, 671-674 (2002).
[26] S. N. Lemiashonak, Zh. D. Chaplanova, V. E. Agabekov, N. A. Ivanova, and I. N. Kukhta, “Photoisomerization and photoorientation of brilliant yellow in the thin film state,” Doklady of the National Academy of Sciences of Belarus, 63(2), 169–174 (2019).
[27] H. Hervel, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystal by a novel optical method,” J. Chem. Phys. 68, 2725-2729 (1978).
[28] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystal regulated photochemically by “Command Surface” modified with an azobenzene monoayer,” Langmuir 4, 1214-1216 (1988).
[29] I. Jánossy, “Optical reorientation in dye-doped liquid crystals,” J. Nonlinear Opt. Phys. Mater. 8(3), 361–377 (1999).
[30] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[31] W. M. Gibbons, T. Kosa, P. P. Muhoray, P. J. Shannon, and S. T. Sun “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 377, 43–46 (1995).
[32] X. X. Qiao, X. J. Zhang, Y. B. Guo, S. K. Yang, and Y. G. Meng, “Boundary layer viscosity of CNT-doped liquid crystals: Effects of phase behavior,” Rheol Acta 52, 939-947 (2013).
[33] 陳偉科, “非共振吸收光聚合之「聚合物-液晶」混合薄膜元件光學特性研究”,國立成功大學光電科學與工程研究所(2010).
[34] https://en.wikipedia.org/wiki/File:4-Cyano-4%27-pentylbiphenyl.svg
[35] 邱謙育, “利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器”,國立中央大學光電科學與工程學系 (2016)
[36] https://www.dakenchem.com/polymer-dispersed-liquid-crystals/
[37] https://patents.google.com/patent/EP1283253A1/en
[38] X. Li, X. W. Du, P. Y. Guo, J. L. Zhu, W. J. Ye, Q. Xu, and Y. B Sun, “Fast Switchable Dual-Model Grating by Using Polymer-Stabilized Sphere Phase Liquid Crystal,” Polymers 10(8), 884 (2018).
[39] Y. J. Liu, P. C. Wu, and W. Lee, “Spectral Variation in selective reflection in cholesteric liquid crystals containing opposite handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37-44 (2014).
[40] Z. P. Zhang, V. P. Panov, M. Nagaraj, R. J. Mandle, J. W. Goodby, G. R. Luckhurst, J. C. Jones, and H. F. Gleeson, “Raman Scattering studies of order parameters in liquid crystalline dimers exhibiting the nematic and twist-bend nematic phases,” J. Mater. Chem. C 3, 10007-10016 (2015).
[41] https://www.sigmaaldrich.com/TW/en/product/aldrich/201375
[42] O. Yaroshchuk, H. Gurumurthy, V. G. Chigrinov, H. S. Kwok, H. Hasebe, and H. Takatsu, “Photoalignment properties of brilliant yellow dye,” IDW ′07 - Proceedings of the 14th International Display Workshops 3, 1665-1668 (2007).
[43] O. S. Iadlovska, G. R. Maxwell, G. Babakhanova, G. H. Mehl, C. Welch, S. V. Shiyanovskii, and O. D. Lavrentovich, "Tuning selective reflection of light by surface anchoring in cholesteric cells with oblique helicoidal structures," Opt. Lett. 43, 1850-1853 (2018).
[44] O. S. Iadlovska, G. Babakhanova, G. H. Mehl, C. Welch, E. Cruickshank, G. J. Strachan, J. M. D. Storey, C. T. Imrie, S.V. Shiyanovskii, and O. D. Lavrentovich, “Temperature dependence of bend elastic constant in oblique helicoidal cholesterics,” Phys. Rev. Research 2, 013248 (2020).
[45] D.-K. Yang, and S.-T. Wu, “Fundamentals of liquid crystal devices 2ed,” Wiley (2015).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明