博碩士論文 109226030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:52.15.59.163
姓名 蔡沅璋(Yuan-Chang Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 透過聚合物穩固或動態散射機制製作散射式液晶波導元件
(Scattering-type liquid crystal waveguide devices based on polymer stabilization or dynamic scattering mechanisms)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文可分為兩大方向,第一部分主要使用液晶波導原理討論扭轉混成型結構之聚合物網絡型液晶盒(TH-PNLC),利用側向光源饋入液晶盒,若未施加電場至TH-PNLC液晶盒,由於材料中向列型液晶分子與液晶聚合物折射率匹配,故入射光於液晶盒中進行全反射;而當施加電場至TH-PNLC液晶盒,由於材料中向列型液晶分子與液晶聚合物折射率產生不匹配,其入射光產生散射並由兩觀測面出射。此時觀察到兩道出射散射光之主要的偏振光分量具有差異,且若材料中摻雜光起始劑則此差異會增加,為了解此現象,我們透過探討聚合物網絡型液晶於光聚合後對TH結構的改變,以及於材料中摻雜光起始劑與未摻雜光起始劑之TH-PNLC液晶盒進行比較,探討其出射散射光偏振態的變化,並且以正向入射未偏振及線偏振光至未摻雜及摻雜光起始劑之TH-PNLC液晶盒,用於對比側向光源饋入液晶盒結果。接著統整上述所得結論,完整解釋當未偏振光自側向入射之TH-PNLC造成其兩側出射散射光偏振差異的原因;最後利用TH-PNLC結構非對稱特性之散射光製作單向光源液晶元件及隱私保護之應用。
第二部分為使用負型液晶摻雜手性分子及離子並利用塗佈有PVK薄膜及垂直配向膜之ITO玻璃基板製成液晶盒,透過PVK薄膜能阻絕直流電場及照射紫外光後可形成良好導體的特性,結合液晶動態散射執行圖案化的工作,其中當外加高頻電場至液晶盒時,可將其切換至穿透態(平面態結構),當關閉外加電場後,仍可持續維持於穿透態(平面態結構);然而利用低頻或直流電場便可將穿透態切換至散射狀態(焦錐態結構),同樣關閉外加電場後,仍可持續維持於散射態(焦錐態結構)。而由於PVK薄膜特性,可藉由光罩將液晶盒區分出受紫外光照射的區域,當開啟直流電場及紫外光即可使液晶盒同時具有散射態的文字圖案及其餘穿透態的透明區域,並透過將側向光源饋入寫上圖案之液晶盒,即可利用液晶波導的原理,入射光於穿透態區域中因折射率連續而進行全反射使其觀側面無出射光;而於散射態之文字區域則因折射率不連續使文字圖案產生出射光,進而提高液晶盒整體對比度。
摘要(英) The research topics in this thesis include the following two sections. The first section focuses on the applications of the liquid crystal (LC) waveguide effect to discuss the fabrications of twisted hybrid polymer network LC (TH-PNLC) structures. When an edge light source is fed into the LC cell and no electric field is applied to the TH-PNLC cell, the refractive indices of the nematic LCs and the LC polymer are matched. As a result, the incident light undergoes total internal reflection within the LC cell. However, when an electric field is applied to the TH-PNLC cell, the refractive indices of the nematic LCs and the LC polymer become mismatched. This mismatch causes the incident light to scatter and emit from the two observation surfaces of the LC cell. When observing the scattered light emitted from the two surfaces, there is a difference in the main polarization components of the scattered light from the two substrates. Additionally, if the material is doped with a photoinitiator, this difference in polarization components will increase. To understand this phenomenon, we investigate the changes in the TH structures after photopolymerization and the variations in the polarization states of the scattered light from the TH-PNLC cell without doping and with doping of the photoinitiator in the material. Input unpolarized and linearly polarized light to TH-PNLC cells without doping and with doping of the photoinitiator, respectively, the different results of feeding side light sources into the two LC cells are obtained. In summary, the obtained results explain the reasons for the polarization differences in the scattered light emitted from the sides of the TH-PNLC when unpolarized light is incident from the side. Finally, the asymmetric scattering property of the TH-PNLC structure is utilized to demonstrate unidirectional LC light source devices and privacy protection applications.
In the second section, negative-type LCs doped with chiral dopants and ions are used to demonstrate an LC cell fabricated by two ITO glass substrates coated with a PVK film and a vertically aligned film. By utilizing the PVK film′s ability to block DC electric fields and its property of forming a good conductor when exposed to ultraviolet light, it is possible to obtain pattern addressing work using dynamic scattering of LCs. When a suitable high-frequency electric field is applied to the LC cell, it can be switched to a transparent state with planar textures. Even after the external electric field is turned off, it can still maintain the transparent state with imperfect planar textures. However, by applying a low-frequency or DC electric field, the transparent state can be switched to a scattering state with focal conic textures via dynamic scattering. Similarly, even after the external applied electric field is turned off, it can maintain the scattering state (focal conic textures). Due to the characteristics of the PVK film, the LC cell can be divided into two regions exposed to ultraviolet light using a photomask. When a DC electric field and ultraviolet light are applied simultaneously, the LC cell can exhibit a scattering state for text patterns and transparent regions for the rest. When an edge light source is fed into the LC cell with the addressed pattern, the principle of the LC waveguide is utilized to display the contrast. Incident light in the transparent region undergoes total internal reflection due to the continuous refractive index, resulting in no light being emitted from the side view. However, in the scattering region with the addressed pattern, the discontinuous refractive index causes the patterns to emit light, thereby enhancing the overall contrast of the LC cell.
關鍵字(中) ★ 液晶 關鍵字(英) ★ liquid crystal
論文目次 目錄
摘要 i
Abstract iii
目錄 vi
圖目錄 x
表目錄 xvi
符號說明 xvii
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機與相關文獻回顧 1
§1-2-1 液晶波導顯示器 2
§1-2-2 非對稱光學[11][12] 5
§1-2-3 液晶動態手紋結構[7] 9
§1-3 論文架構 10
第二章 液晶簡介 12
§2-1 液晶的發現 12
§2-2 液晶的定義[7] 13
§2-3 液晶的分類[18][19][20][21] 13
§2-3-1 向列型液晶(Nematic LCs) [20] [22] [23] 14
§2-3-2 層列型液晶(Smectic LCs) 15
§2-3-3 膽固醇型液晶(Cholesteric LCs,N*) [23][25][26] 18
§2-4 液晶物理 21
§2-4-1 光學異向性(optical anisotropy) [27] 21
§2-4-2 介電異向性(dielectric anisotropy) [23][27] 25
§2-4-3 Fréedericksz transition [23][29] 26
§2-4-4 連續彈性體理論(elastic continuum theory) [23][29][30] 27
第三章 實驗相關理論 29
§3-1 聚乙烯基咔唑薄膜 29
§3-1-1 光導電性(photoconductivity effect) [35] 29
§3-1-2 電雙層(electric double layer) 29
§3-2 動態散射理論(dynamic scattering theory) 31
§3-3 表面配向膜 33
§3-3-1 水平配向(homogeneous alignment) 33
§3-3-2 垂直配向(homeotropic alignment) 34
§3-3-3 混成配向(hybrid alignment) 35
§3-3-4 混成扭轉型配向(twisted hybrid alignment)[6] 35
§3-4 液晶波導元件的散射特性 36
§3-4-1 水平配向液晶盒製成之液晶波導元件[47][48][49] 36
§3-4-2 混成扭轉型液晶盒製成之液晶波導元件[6] 39
第四章 實驗方法與過程 42
§4-1 實驗材料 42
§4-1-1 向列型液晶:HNG30400-200 42
§4-1-2 離子材料--十二烷基磺酸鈉 42
§4-1-3 手性分子--R1011 43
§4-1-4 聚乙烯基咔唑 43
§4-1-5 向列型液晶--E7 43
§4-1-6 手性分子--CB15 44
§4-1-7 液晶聚合物--RM257 45
§4-1-8 光起始劑--DMPAP 45
§4-2 實驗樣品準備與液晶盒製作 45
§4-2-1 材料調配 45
§4-2-2 玻璃基板裁切與清洗 46
§4-2-3 配向膜製程 46
§4-2-4 液晶盒製作 48
§4-2-5 液晶空盒厚度測量 48
§4-2-6 液晶注入 50
§4-3 樣品觀測與實驗架設 50
§4-3-1 樣品觀測 51
§4-3-2 液晶盒夾具 51
§4-3-3 氦氖雷射測量樣品之光電特性 52
§4-3-4 測量樣品之反應時間 53
§4-3-5 透過光罩於液晶盒上寫入圖案 54
§4-3-6 測量聚合物網絡液晶盒側向入射白光LED之光電特性 54
第五章 實驗結果與討論 56
§5-1 側向入射未偏振光至TH-PNLC液晶盒之散射光偏振特性 56
§5-1-1 TH-PNLC散射光非對稱特性比較 56
§5-1-2 光聚合後對於膽固醇液晶聚合物結構之影響 60
§5-1-3 光起始劑對於TH-PNLC結構之影響 64
§5-2 光源由觀測面正向入射至TH-PNLC之出射光偏振特性 71
§5-2-1 正向入射未偏振光至施加電場之TH-PNLC 72
§5-2-2 正向入射線偏振光至施加電場之TH-PNLC 74
§5-2-3正向入射線偏振光至未施加電場之TH-PNLC液晶盒 78
§5-2-4 利用TH-PNLC結構之非對稱特性製作單向光源液晶元件 82
§5-2-5 利用TH-PNLC結構製作具備隱私保護之穿透式單向光源 86
§5-3 利用PVK薄膜與動態散射特性製作雙穩態液晶顯示元件 88
§5-3-1 紫外光強度與液晶電壓穿透曲線之關係 89
§5-3-2 紫外光強度與PVK反應時間之關係 90
§5-3-3 寫入圖案並觀察結果 92
第六章 結論與未來展望 96
§6-1 結論 96
§6-1-1 側向入射未偏振光至TH-PNLC液晶盒之散射光偏振特性 96
§6-1-2 光聚合前後及摻雜光起始劑對於TH-PNLC結構之影響 97
§6-1-3 光源由基板面正向入射至TH-PNLC之偏振特性 98
§6-1-4 利用TH-PNLC結構之非對稱特性製作單向光源液晶元件及隱私保護應用 99
§6-1-5 利用PVK薄膜與動態散射特性製作雙穩態液晶顯示元件 99
§6-2 未來展望 100
參考文獻 103
參考文獻 [1] C.-K. Liu, C.-Y. Tu, H.-R. Lin, and K.-T. Cheng, “Asymmetrical
transmission windows for daily privacy protection using cholesteric
liquid crystals,” Opt. Laser Technol. 121, 105778 (2020).
[2] C.-J. Yu and C.-M. Hsieh, “Electrically Controllable Polarization
Element,” IEEE Photon. Technol. Lett. 28(11), 1229–1232 (2016).
[3] M. Kawamura, and Y. Ito, “Liquid crystal lens with double circular
hole-patterned electrodes,” Mol. Cryst. Liq. Cryst. 542(1), 176-181
(2011).
[4] C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of
floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst.
45(1), 40-48 (2017).
[5] C.-J. Yu and C.-X. Chou, “Electrically rotated retarder/ diattenuator
system for application to a variety of polarization elements,” Opt.
Commun. 508, 127809 (2022).
[6] 王聖文,非對稱散射式液晶波導元件及其應用(國立中央大學,碩
士論文,民國 110 年)
[7] K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T.
D. Wilkinson “Electrically Switchable and Permanently Stable Light
Scattering Modes by Dynamic Fingerprint Chiral Textures” ACS Appl.
Mater. Interfaces 8, 10483-10493 (2016).
[8] X. Zhou, G. Qin, L. Wang, Z. Chen, X. Xu, Y. Dong, A. Moheghi, and
D.-K. Yang, “Full color waveguide liquid crystal display,” Opt. Lett. 42,
3706-3709 (2017).
[9] H.-Y. Tseng, K.-W. Lin, L.-M. Chang, G.-Y. Lu, C.-C .Li, S.-W. Wang,
K.-T. Cheng, and T.-H. Lin*, “Image quality enhancement of
transparent waveguide display using twisted nematic mode
polymer-stabilized liquid crystal,” Opt. Express 30(4), 5255-5264
(2022).
[10] A. Moheghi, H. Nemati, and D.-K. Yang, “Polarizing light waveguide
plate from polymer stabilized liquid crystals” Opt. Mater. Express 5(5)
1217-1223 (2015).
[11] 陳維軒,利用扭轉型聚合物網絡液晶製作偏振選擇性光散射之研究
(國立中央大學,碩士論文,民國 105 年)
104
[12] C.-K. Liu, W.-H. Chen, and K.-T. Cheng, “Asymmetrical
polarization-dependent scattering and reflection in a sole cell of
polymer network-90° twisted nematic liquid crystals,” Opt. Express 25,
22388-22403 (2017).
[13] A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt
doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–
223 (2016).
[14] K-W Lin, H-Y Tseng, L-M Chang, C-C Li, C-T Wang, and T-H Lin,
“Mechanism of scattering bistable light valves based on salt-doped
cholesteric liquid crystals, ” Opt. Express 29, 41213-41221 (2021).
[15] F. Reinizer, “Beitrage zur kenntniss des cholesterins,” Monatsh. Chem.
9, 421-41 (1888).
[16] Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[17] D. Dunmur and T. Sluckin, “Soap, Science, and Flat-screen TVs: a
history of liquid crystals,” Oxford University Press, USA (2011).
[18] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry
and Physics,” CRC Press, London (1997).
[19] D. Andrienko, “Introduction to liquid crystals,” J. Mol. Liq. 267,
520-541 (2018).
[20] J. Thomas and Y. Heights, “Thermodynamic and static properties of
liquid crystals,” Prog. Solid. State Ch. 10, 103-118(1975).
[21] G. W. Gray, “Molecular Structure and the Properties of Liquid
Crystals,” Academic Press., London (1962).
[22] R. J. A. Tough and M. J. Bradshaw, “The determination of the order
parameters of nematic liquid crystals by mean field extrapolation,” J.
Phys. 44, 447-454 (1983).
[23] P. G. de. Gennes and J. Prost, “The Physics of Liquid Crystal,” 2nd ed.,
Oxford (1993).
[24] H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer,
New York (2001).
[25] M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection
Band,” Adv. Mater. 24, 6251-6383 (2012).
[26] G. Friedel, “Les états mésomorphes de la matière,” Ann. Phys. 18, 273
(1922).
105
[27] Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Ltd.
(1983).
[28] D.-K. Yang and S.-T. Wu, “Fundamentals of Liquid Crystal Devices
2nd,” John Wiley & Sons, Ltd. (2014).
[29] G. Vertogen, “Elastic Constants and the Continuum Theory of Liquid
Crystals,” Physica 117A, 227-231 (1983).
[30] P. Yeh and C. Gu, “Optics of Liquid Crystal Displays,” John Wiley &
Sons, Inc., New York (1999).
[31] R. B. Meyer, “Eddects of electriv and magnetic field on the structure of
cholesteric liquid crystals,” Appl. Phys. Lett. 12, 280 (1968).
[32] Y.-D. Chen, K.-T. Cheng, C.-K. Liu, and A. Y.-G. Fuh, “Polarization
rotators fabricated by thermally-switched liquid crystal alignments of
rubbed poly(N-vinyl carbazole) films,” Opt. Express 19, 7553-7558
(2011).
[33] Y.-D. Chen, A. Y.-G. Fuh, and K.-T. Cheng, “Particular thermally
induced phase separation of liquid crystal and poly(N-vinyl carbazole)
films and its application, ” Opt. Express 20, 16777-16784 (2012).
[34] M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK
and PVCN polymer layers for control of liquid crystal alignment,” J.
Nonlinear Opt. Phys. Mater. 12, 547–555 (2003).
[35] H. Bolink, "Photorefractive Polymers," University of Groningen,
Netherlands (1997).
[36] H. Mada and K. Osajima, “Time response of a nematic liquid‐crystal
cell in a switched dc electric field,” J. Appl. Phys. 60, 3111 (1986).
[37] A. Sugimura, Y. Takahashi, N. Matsui, and M. Okuda “Transient
currents in nematic liquid crystals,” Phys. Rev. B, 43, 8272 (1991).
[38] A. Mochizuki, T. Yoshihara, K. Motoyoshi, and S. Kobayashi, “An
electric bilayer model of the transient current in a nematic liquid
crystal cell,” Jpn. J. Appl. Phys. 29, 322 (1990).
[39] H. Jin, Y.-B. Hou, X. G. Meng, A. W. Tang, and F. Teng,
“Photoconductive properties of PVK:Alq3 blend films studied by
steady-state and time-resolved transient photocurrent spectra,” Chinese
J. Polym. Sci. 26, 249 (2008).
[40] H. C. Nayak, S. S. Parmar, R. P. Kumhar and S. Rajput “Modulation in
Electric Conduction of PVK and Ferrocene-Doped PVK Thin Films,”
Electron. Mater. 3(1), 53-62 (2022).
106
[41] 李家豪,利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶
光圈(國立中央大學,碩士論文,民國 107 年)
[42] R. Williams, “Domains in Liquid Crystals,” J. Chem. Phys. 39, 384
(1963).
[43] R. Williams, “Liquid Crystals in an Electric Field,” Nature 199, 273
(1963).
[44] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic Scattering:
A New Electrooptic Effect in Certain Classes of Nematic Liquid
Crystals,” Proc. IEEE 56, 1152 (1968).
[45] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic Scattering
in Nematic Liquid Crystals,” Appl. Phys. Lett. 13, 46 (1968).
[46] G. H. Heilmeier and J. E. Goldmacher, “A new electric-field-controlled
reflective optical storage effect in mixed liquid-crystal systems,” Appl.
Phys. Lett. 13, 132 (1968).
[47] X. Zhou, G. Qin, L. Wang, Z. Chen, X. Xu, Y. Dong, A. Moheghi, and
D. K. Yang “Full color waveguide liquid crystal display” Opt. Lett.
42(18), 3706-3709 (2017).
[48] Y. Shin, J. Jiang, G. Qin, Q. Wang, Z. Zhou and D. K. Yang “Patterned
waveguide liquid crystal displays” RSC Adv. 10, 41693-41702 (2020).
[49] A. Moheghi, G. Qin and D. K. Yang, “Stable polarizing light
waveguide plate for edgelit liquid crystal displays” Opt. Mater. Express
6(2), 429-435 (2016).
[50] 林宏遠,側向光源散射式液晶透明顯示器(國立中山大學,碩士論
文,民國 107 年)
[51] X. Li, M. Zhang, C, Zhang, R. Niu, H. Ma and Y. Sun “A bistable
ion-doped cholesteric liquid crystal smart window with a small amount
of polymer” Opt. Mater. 138, 113659 (2023).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明