博碩士論文 110226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:52.15.113.71
姓名 王語謙(Yu-Chien Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光導式近眼顯示器之子畫面擷取技術
(Sub-picture extraction technology of light guide near-eye display)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 歐規之高對比度近遠燈設計與雜散光分析
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究★ 費奈爾透鏡之光學效率與雜散光分析
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析★ 多波繞射疊加訊號法之參考光位置誤差分析
★ 使用方解石於數位全像顯微系統的深度測量系統★ 陣列式燈具光學特性快速量測之研究
★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本論文主要利用角度多工的方式結合近眼顯示器技術和光場的設計來解決視覺輻輳調節衝突的問題,利用體積全像的布拉格條件之限制選取出特定子畫面的效果。
摘要(英) This paper mainly uses the method of angle multiplexing combined with the near-eye display technology and the design of the light field to solve the problem of visual vergence adjustment conflict, and uses the limitation of the Bragg condition of the volume hologram to select the effect of a specific sub-picture.
關鍵字(中) ★ 體積全像
★ 相位疊加法
★ 光導
關鍵字(英) ★ volume hologram
★ VOHIL
★ light guide
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 VII
第一章 緒論 1
1-1 研究動機 1
1-2 全像術之發展 3
第二章 實驗原理 4
2-1 全像術 4
2-2 薄全像與厚全像 6
2-3 布拉格條件 7
2-4 體積全像之角度選擇性 10
2-5 耦合波理論 11
2-6 相位疊加法 28
第三章 體積全像光學元件之角度選擇性模擬 35
3-1 建立相位疊加法一維分析 35
3-2 建立相位疊加法三維解析解 41
3-3 驗證一維和三維解析式之特性 47
3-4 將體積全像光學元件之角度選擇性應用於光場技術 50
第四章 體積全像光學元件之角度選擇性實驗 53
4-1 實驗架構 53
4-2 一維光導之設計 57
4-3 二維光導之設計 64
4-4 一維與二維光導之實驗結果分析 74
4-4.1 角度選擇性的分析 75
4-4.2 使用白光讀取時波長的分析 77
4-4.3 一維與二維光導之結果與討論 80
第五章 結論 83
參考資料 85
中英文名詞對照表 88
參考文獻 [1] Azuma and T. Ronald, “A survey of augmented reality,” Presence: teleoperators & virtual environments 6(4), 355-385 (1997).
[2] M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” presented at CHI conference on human factors in computing systems, New York, United States, 1-15 May 2019.
[3] G. Schmitt, “Virtual Reality, Augmented Reality, and Mixed Reality,” https://dribbble.com/shots/2858797-Virtual-Reality-Augmented-Reality-and-Mixed-Reality.
[4] C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, “Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective,” Optica 7(11), 1563-1578 (2020).
[5] M. Billinghurst and H. Kato, “Collaborative mixed reality,” presented at the first international symposium on mixed reality, Yokohama, Japan, 261-284 March 1999.
[6] B. C. Kress, Optical architectures for augmented-, virtual-, and mixed-reality headsets. (SPIE, Bellingham, Washington, 2020).
[7] N. Cattari, F. Cutolo, R. D’amato, U. Fontana, and V. Ferrari, “Toed-in vs parallel displays in video see-through head-mounted displays for close-up view,” IEEE 7, 159698-159711 (2019).
[8] J. P. Rolland and H. J. P. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9(3), 287-309 (2009).
[9] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, “Evaluating the Microsoft HoloLens through an augmented reality assembly application,” SPIE 10197, 282-297 (2017).
[10] M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452-2461 (1995).
[11] Y. S. Cheng, Z. F. Chen, and C. H. Chen, “Virtual-image generation in 360-degree viewable image-plane disk-type multiplex holography,” Opt. Express 21(8), 10301-10313 (2013).
[12] L. Eisen, M. Meyklyar, M. Golub, A. Friesem, I. Gurwich, and V. L. Weiss, “Planar configuration for image projection,” Appl. Opt. 45, 4005-4011 (2006).
[13] S. Yamazaki, K. Inoguchi, Y. Saito, H. Morishima, and N. Taniguchi, “Thin wide-field-of-view HMD with free-form-surface prism and applications,” SPIE 3639, 453-462 (1999).
[14] C. T. Draper, C. M. Bigler, M. S. Mann, K. Sarma, and P. A .Blanche, “Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification,” Appl. Opt. 58(5), 251-257 (2019).
[15] E. Pavel, M. Mihailescu, V. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Opt. Commun. 284(4), 930-933 (2011).
[16] D. Lanman and D. Luebke, “Near-Eye Light Field Displays,” ACM transactions on graphics (TOG) 32(6), 1-10 (2013).
[17] C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292-18301(2018).
[18] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
[19] D Gabor and P. Sciences, “Microscopy by reconstructed wave-fronts,” The Royal Society Mathematical and Physical Sciences 197(1051), 454-487 (1949).
[20] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55(8), 981-986 (1965).
[21] E. Völkl, L. F. Allard, and D. C. Joy, Introduction to electron holography. (Springer Science & Business Media, New York, 1999).
[22] G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” IEEE 87(12), 2098-2120 (1999).
[23] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811-813 (1999).
[24] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I. (Springer-Verlag, Berlin, 1988).
[25] B. R. David, Understanding diffraction in volume gratings and holograms. (InTech, New York, 2013).
[26] W. Klein, “Theoretical efficiency of Bragg devices,” IEEE 54(5), 803-804 (1966).
[27] A. Gershun, “The light field,” Journal of Mathematics and Physics 18(1-4), 51-151 (1939).
[28] C. Londono, W. T. Plummer, and P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
[29] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
[30] A. Yariv and P. Yeh, Optical waves in crystals. (Wiley, New York, 1984).
[31] P. Yeh, Introduction to photorefractive nonlinear optics. (Wiley, New York, 1993).
[32] A. Chiou, P. Yeh, C. X. Yang, and C. Gu, “Photorefractive coupler for fault-tolerant coupling,” IEEE 7(7), 789-791 (1995).
[33] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20(10), 1125-1127 (1995).
[34] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
[35] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
[36] J. W. Goodman, Introduction to Fourier Optics. (McGraw-Hall, New York, 2002).
[37] C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132-1134 (2005).
[38] C. C. Sun and P. P. Banerjee, “Volume holographic optical elements,” Opt. Eng. 43(9) (2004).
[39] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
[40] C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175(1-3), pp.67-74 (2000).
[41] Y. W. Yu, C. Y. Cheng, T. C. Teng, C. H. Chen, S. H. Lin, B. R. Wu, C. C. Hsu, Y. J. Chen, X. H. Lee, and C. Y. Wu, “Method of compensating for pixel migration in volume holographic optical disc (VHOD),” Opt. Express 20(19), 20863-20873 (2012).
[42] J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, ”Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Experss 24(6), A720-A730 (2016).
[43] 余業緯,應用體積全像光學元件之布拉格窗於點對點成像之研究,國立中央大學光電所碩士論文,中華民國九十三年。
[44] 黃郁泓,體積全像光學元件之波長及角度選擇性,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
指導教授 余業緯(Yeh-Wei Yu) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明