參考文獻 |
1. W. A. Bhat, “Is a data-capacity gap inevitable in big data storage?,” Computer 51(9), 54-62 (2018).
2. D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to core,” Framingham: International Data Corporation 16, 1-28 (2018).
3. D. Sarid and B. H. Schechtman, “A roadmap for optical data storage applications,” Opt. Photonics News 18(5), 32-37 (2007).
4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749-752 (1994).
5. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, and R. M. Shelby, “Holographic data storage technology,” IBM journal of research and development 44(3), 341-368 (2000).
6. E. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303-1311 (1966).
7. L. Dhar, K. Curtis, and T. Fäcke, “Coming of age,” Nature photonics 2(7), 403-405 (2008).
8. D. Gabor, “A New Microscopi Prinnciple,” Nature 161, 777-778 (1948).
9. J. Hecht, “Short history of laser development,” Opt. Eng. 49(9), 091002-091002-091023 (2010).
10. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52(10), 1123-1130 (1962).
11. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393-400 (1963).
12. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915-917 (1993).
13. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19(13), 993-994 (1994).
14. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90 geometry,” Opt. Commun. 117(1), 49-55 (1995).
15. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2), 171-176 (1991).
16. T. Francis, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81(6), 343-347 (1991).
17. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471-1473 (1992).
18. T. Nobukawa and T. Nomura, “Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram,” Appl. Opt. 56(13), F31-F36 (2017).
19. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782-784 (1995).
20. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403-2417 (1996).
21. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer, 2000).
22. M. W. Chang, C. C. Sun, R. H. Tsou, W. Chang, and J. Y. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground glass,” presented at Practical Holography X SPIE, U.S., 25 March 1996.
23. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
24. Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35(8), 1130-1132 (2010).
25. J. Heanue, M. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34(26), 6012-6015 (1995).
26. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561-3571 (2007).
27. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25(9), 610-612 (2000).
28. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124-4132 (2002).
29. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36(10), 2737-2746 (1997).
30. G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, M. Jurich, R. M. Macfarlane, and R. M. Shelby, “High-density and high-capacity holographic data storage,” Asian Journal of Physics 10(2), 117-134 (2001).
31. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575-2579 (2005).
32. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Review 12(2), 90-92 (2005).
33. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45(5), 910-914 (2006).
34. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
35. W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43(8), 1728-1733 (2004).
36. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
37. C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132-1134 (2005).
38. T. C. Teng, P. C. Ou, and C. C. Sun, “Volume holographic optical elements for point-to-point imaging with local cross talk,” Opt. Lett. 30(22), 3015-3017 (2005).
39. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909-2947 (1969).
40. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27(9), 1752-1759 (1988).
41. E. S. Maniloff and K. M. Johnson, “Maximized photorefractive holographic storage,” Journal of Applied physics 70(9), 4702-4707 (1991).
42. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896-898 (1996).
43. X. Simon, “Synthesis and physical measurements of a photorefractive polymer,” Journal of the Chemical Society, Chemical Communications 1, 1735-1737 (1992).
44. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902-4914 (2004).
45. 關懷明,N倍繞射效率之體積全像多工技術,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
46. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626-3637 (2009).
47. Y. W. Yu, C. M. Shu, C. C. Sun, P. K. Hsieh, and T. H. Yang, “Optical servo with high design freedom using spherical-wave Bragg degeneracy in a volume holographic optical element,” Opt. Express 27(24), 35512-35523 (2019).
48. Y. W. Yu, Y. C. Chen, K. H. Huang, C. Y. Cheng, T. H. Yang, S. H. Lin, and C. C. Sun, “Reduction of phase error on phase-only volume-holographic disc rotation with pre-processing by phase integral,” Opt. Express 28(19), 28573-28583 (2020).
49. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412-10423 (2016).
50. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
51. 孫慶成,光電工程概論 (全華圖書,新北市2014)。 |