博碩士論文 110226072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.147.78.185
姓名 陳奕墉(Yi-Yung Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 記錄於倒數空間高繞射效率之全像儲存系統
(A Holographic Data Storage System Recorded in Reciprocal Space with High Diffractive Efficiency)
相關論文
★ 提升近眼顯示器光學效率之輸入影像頻譜分布技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 在傳統的全像儲存系統中,我們可以利用全像片感光材料層的厚度,在同一塊區域中對不同角度資訊的多工記錄。而有鑑於目前的全像儲存多工技術中,存在著多工張數對於繞射效率的影響,且其繞射效率會隨著多工張數增加而下降至多工張數的平方倍,另一方面,繞射效率降低會降低儲存系統的讀取速度及儲存容量。因此,我們提出了「N倍繞射效率之體積全像多工技術」,改善了上述提到繞射效率降低為多工張數平方倍的問題,但是實驗的讀取影像資訊有著資訊不均勻的狀況。
本論文提出了記錄倒數空間中的資訊,再經過透鏡將資訊傅式轉換為原本設計的訊號,以改善讀取訊號的均勻度,並增加記錄資訊頁數;此全像儲存系統將資訊多工記錄在同一塊記錄區域中,讀取到的訊號為每道讀取光個別讀取的訊號疊加後的干涉結果,透過全像底片的位移,讀取位置對應到讀取光的波前改變,資訊的相位亦受到改變,因此,我們藉由設計訊號疊加的相位在位移讀取時產生建設性干涉及破壞性干涉的結果,可以改變不同位移量得到訊號亮暗的變化,並且透過記錄倒數空間的資訊得到較高均勻度的讀取資訊。
摘要(英) In traditional holographic storage systems, we can utilize the thickness of the photosensitive material layer in holographic plates to achieve multiplex recording of information from different angles within the same area. However, current holographic storage multiplexing techniques suffer from a decrease in diffraction efficiency as the number of multiplexed holograms increases. The diffraction efficiency tends to decrease by the square of the multiplexing factor, which negatively impacts readout speed and capacity.
To address this issue, we propose the " N Times Enhancement of Diffraction Efficiency of Volume Holographic Multiplexing Technology," which improves the problem of diffraction efficiency decreasing by the square of the multiplexing factor. However, experiments have shown uneven distribution of information in the readout images.
In this paper, we introduce the recording of information in reciprocal space and subsequently transform the information through a lens using Fourier transformation. This process improves the uniformity of the readout signal and increases the number of recorded information pages. In this holographic storage system, multiple sets of information are multiplexed and recorded in the same recording area. The readout signal is obtained by the interference of individually retrieved signals from each reading beam. By introducing a shift in the holographic plate, the readout position corresponds to a change in the wavefront of the reading beam, resulting in a phase change in the recorded information. Therefore, we design the phase of the superimposed signals to produce constructive and destructive interference during the shift readout process, allowing for variations in signal intensity corresponding to different shift distances. Additionally, utilizing the information in reciprocal space enables higher uniformity in the readout information.
關鍵字(中) ★ 全像術
★ 全像儲存
關鍵字(英)
論文目次 摘要 V
ABSTRACT VI
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XX
第一章 緒論 1
1-1 資訊儲存簡介 1
1-2 全像術發展 2
1-3 研究動機 3
第二章 體積全像原理介紹 5
2-1 全像術 5
2-2 相位疊加法 8
2-3 布拉格條件 11
2-4 布拉格簡併 13
2-5 耦合波理論 14
2-6 M-NUMBER 23
2-7 相位補償 26
第三章 儲存架構之基底概念 29
3-1 全像儲存系統架構 29
3-1-1 實驗架構 29
3-1-2 系統放大率倍率 33
3-1-3 訊號調製 34
3-2 探討多工角度 34
3-3 FOURIER TRANSFORM 讀取 36
3-4 繞射能量計算 38
3-5 改變兩參考光間距 40
第四章 多工記錄疊加讀取實驗結果 44
4-1 訊號及八道參考光設計 44
4-1-1 參考光設計 45
4-1-2 相位設計 45
4-1-3 相位補償 47
4-2 改變讀取光相位 50
4-3 改變參考光相位 60
4-4 繞射效率 64
4-5 實驗結果討論 66
第五章 結論 67
參考文獻 69
中英文名詞對照表 73
參考文獻 1. W. A. Bhat, “Is a data-capacity gap inevitable in big data storage?,” Computer 51(9), 54-62 (2018).
2. D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to core,” Framingham: International Data Corporation 16, 1-28 (2018).
3. D. Sarid and B. H. Schechtman, “A roadmap for optical data storage applications,” Opt. Photonics News 18(5), 32-37 (2007).
4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749-752 (1994).
5. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, and R. M. Shelby, “Holographic data storage technology,” IBM journal of research and development 44(3), 341-368 (2000).
6. E. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303-1311 (1966).
7. L. Dhar, K. Curtis, and T. Fäcke, “Coming of age,” Nature photonics 2(7), 403-405 (2008).
8. D. Gabor, “A New Microscopi Prinnciple,” Nature 161, 777-778 (1948).
9. J. Hecht, “Short history of laser development,” Opt. Eng. 49(9), 091002-091002-091023 (2010).
10. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52(10), 1123-1130 (1962).
11. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393-400 (1963).
12. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915-917 (1993).
13. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19(13), 993-994 (1994).
14. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90 geometry,” Opt. Commun. 117(1), 49-55 (1995).
15. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2), 171-176 (1991).
16. T. Francis, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81(6), 343-347 (1991).
17. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471-1473 (1992).
18. T. Nobukawa and T. Nomura, “Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram,” Appl. Opt. 56(13), F31-F36 (2017).
19. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782-784 (1995).
20. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403-2417 (1996).
21. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer, 2000).
22. M. W. Chang, C. C. Sun, R. H. Tsou, W. Chang, and J. Y. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground glass,” presented at Practical Holography X SPIE, U.S., 25 March 1996.
23. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
24. Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35(8), 1130-1132 (2010).
25. J. Heanue, M. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34(26), 6012-6015 (1995).
26. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561-3571 (2007).
27. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25(9), 610-612 (2000).
28. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124-4132 (2002).
29. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36(10), 2737-2746 (1997).
30. G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, M. Jurich, R. M. Macfarlane, and R. M. Shelby, “High-density and high-capacity holographic data storage,” Asian Journal of Physics 10(2), 117-134 (2001).
31. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575-2579 (2005).
32. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Review 12(2), 90-92 (2005).
33. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45(5), 910-914 (2006).
34. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
35. W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43(8), 1728-1733 (2004).
36. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
37. C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132-1134 (2005).
38. T. C. Teng, P. C. Ou, and C. C. Sun, “Volume holographic optical elements for point-to-point imaging with local cross talk,” Opt. Lett. 30(22), 3015-3017 (2005).
39. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909-2947 (1969).
40. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27(9), 1752-1759 (1988).
41. E. S. Maniloff and K. M. Johnson, “Maximized photorefractive holographic storage,” Journal of Applied physics 70(9), 4702-4707 (1991).
42. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896-898 (1996).
43. X. Simon, “Synthesis and physical measurements of a photorefractive polymer,” Journal of the Chemical Society, Chemical Communications 1, 1735-1737 (1992).
44. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902-4914 (2004).
45. 關懷明,N倍繞射效率之體積全像多工技術,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
46. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626-3637 (2009).
47. Y. W. Yu, C. M. Shu, C. C. Sun, P. K. Hsieh, and T. H. Yang, “Optical servo with high design freedom using spherical-wave Bragg degeneracy in a volume holographic optical element,” Opt. Express 27(24), 35512-35523 (2019).
48. Y. W. Yu, Y. C. Chen, K. H. Huang, C. Y. Cheng, T. H. Yang, S. H. Lin, and C. C. Sun, “Reduction of phase error on phase-only volume-holographic disc rotation with pre-processing by phase integral,” Opt. Express 28(19), 28573-28583 (2020).
49. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412-10423 (2016).
50. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
51. 孫慶成,光電工程概論 (全華圖書,新北市2014)。
指導教授 楊宗勳 余業緯 孫慶成 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明