博碩士論文 110526001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.129.253.65
姓名 鄭凱元(Kai-Yuan Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 透過 SHAP方法解釋學生動機和策略對學習序列的影響
(Explaining the effect of students′ motivation and strategies on learning sequences through SHAP)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 近幾年教學環境應用新興的技術,如人工智能和大數據分析等技術,以更有效地處理和分析教育數據,這些技術的應用為教學團隊提供了更準確和個性化的評估方式,使他們能夠將研究焦點關注在學生的動機和學習策略,以利深入瞭解學生常用的學習方法以及對學習成效的影響,這種趨勢反映出教育領域對於提升學習成效的重視,並透過運用先進技術的能力來瞭解學生的需求和學習狀況。
過去許多研究透過問卷調查和學習序列分析探討其對學習成效的影響,如何考慮到序列的完整性以及建立使用者對工具分析結果的信任是當前教育研究中重要的議題,因此,本實驗旨在比較SBERT+K-means序列分群和傳統序列分群方法間的效果,同時,我們使用可解釋AI的SHAP方法來解釋模型對學習序列使用情形的預測結果,並討論問卷調查和學習序列的使用頻率對學習成效的影響,透過這些分析,我們可以深入了解特徵對模型決策的重要性,以解釋學生的動機和策略以及他們使用的學習行為對學習成效的貢獻。
實驗結果顯示,SBERT結合K-means分群方法的效果能更清晰地呈現出不同群體間的潛在關係,接著透過SHAP方法解釋MSLQ量表預測學習序列使用的影響,觀察到擅長推理和深入思考的學生在閱讀電子書時可能不常使用Highlight和Notetaking等方式進行學習,此外,儘管學生學習時地焦慮程度較高,但他們因為在填寫問卷時表示自己具有較好的動機和策略行為,因此仍持續進行學習以理解知識。實驗進一步探討,問卷調查和學習序列的結合對於學習成效的影響,發現學習序列的使用在學習成效的預測任務中佔有相當大的影響力,這顯示預測學習成效時學習序列的使用是關鍵的因素。
摘要(英) In recent years, emerging technologies such as artificial intelligence and big data analytics have been applied in educational environments to handle and analyze educational data more effectively. These applications provide instructional teams with more accurate and personalized assessment methods, enabling them to focus their research on student motivation and learning strategies. This helps us better understand the learning methods that students commonly use and how these methods affect their learning outcomes. This trend shows that researchers are focusing on improving learning performance and using advanced technologies to understand what students need and how they are learning.
Many studies have explored the effect of learning performance through questionnaire surveys and learning sequence analysis. In current educational research, it is important to make sure the sequence is complete and to ensure that users trust the results of the analysis. Therefore, this experiment aims to compare the effectiveness between SBERT+K-means sequence clustering and traditional sequence clustering methods. Additionally, we employ the interpretable AI method called SHAP to explain the predictive results of the model regarding the usage of learning sequences. Furthermore, we discuss the impact of questionnaire surveys and the frequency of learning sequence usage on learning performance. Through these analyses, we can understand the importance of features in model decisions, explaining the contributions of student motivation, strategies, and learning behaviors to learning outcomes.
The results indicate that using SBERT and K-means clustering method can more clearly demonstrate the underlying relationships among different groups. Furthermore, SHAP method was employed to explain the influence of MSLQ scales on predicting the usage of learning sequences. It was observed that students who are proficient in analytical thinking and deep thinking may not frequently employ learning methods such as highlighting and notetaking while reading e-books. Additionally, despite experiencing higher levels of anxiety during learning, these students continue to engage in learning activities to comprehend the knowledge due to their reported motivation and strategic behavior in the questionnaire. The experiment further explores the combined impact of questionnaire surveys and learning sequences on learning outcome. It was found that the usage of learning sequences holds considerable influence in predicting learning performance, highlighting the critical role of learning sequence usage in predicting learning performance.
關鍵字(中) ★ 學習動機策略量表
★ 學習成效
★ 可解釋人工智慧
★ SHAP
★ 序列分析
★ SBERT
關鍵字(英) ★ MSLQ
★ Learning performance
★ Explainable AI
★ SHAP
★ Sequence analysis
★ SBERT
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 viii
1. 緒論 1
2. 文獻探討 2
2.1. 問卷調查分析 2
2.2. 可解釋AI模型(Explainable AI) 3
2.3. 序列分析(Sequence analysis) 4
3. 研究方法 5
3.1. 學習序列前處理 5
3.1.1. 學習環境 5
3.1.2. 學習事件定義 6
3.1.3. 生成學習序列 7
3.1.4. 合併相同學習行為 8
3.2. 學習序列分析 8
3.2.1. Sentence BERT 9
3.2.2. k-means分群 9
3.2.3. 分群評估指標(Evaluation Metrics) 9
3.2.4. t-SNE 11
3.3. 學習序列分群結果 13
3.4. 相關性分析 16
3.5. 問卷設計 17
3.6. 可解釋性的預測模型 17
3.6.1. 特徵工程 17
3.6.2. 定義標籤 18
3.6.3. 預測模型評估指標(Evaluation Metrics) 19
3.6.4. 模型訓練 20
3.6.5. SHAP解釋模型預測 22
4. 研究結果 22
4.1. RQ1:應用SBERT+K-means分群的學習序列是否優於傳統分群方法? 22
4.2. RQ2:能否透過SHAP方法解釋 MSLQ對學習序列之影響? 27
4.3. RQ3:能否透過SHAP方法解釋 MSLQ和學習序列對學習成效之影響? 36
5. 討論 41
6. 結論 42
7. 限制與未來研究 43
參考文獻 43
自我調節學習問卷(MSLQ) 46
參考文獻 Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010). Representing serial action and perception. Psychonomic bulletin & review, 17, 603-623.
Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access, 6, 52138-52160.
Akçapinar, G., Chen, M. R. A., Majumdar, R., Flanagan, B., & Ogata, H. (2020, March). Exploring student approaches to learning through sequence analysis of reading logs. In Proceedings of the tenth international conference on learning analytics & knowledge (pp. 106-111).
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion, 58, 82-115.
Atif, A., Richards, D., Liu, D., & Bilgin, A. A. (2020). Perceived benefits and barriers of a prototype early alert system to detect engagement and support ‘at-risk’students: The teacher perspective. Computers & Education, 156, 103954.
Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88.
Dor, L. E., Mass, Y., Halfon, A., Venezian, E., Shnayderman, I., Aharonov, R., & Slonim, N. (2018, July). Learning thematic similarity metric from article sections using triplet networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 49-54).
dos Santos Garcia, C., Meincheim, A., Junior, E. R. F., Dallagassa, M. R., Sato, D. M. V., Carvalho, D. R., Santos, E. A. P., & Scalabrin, E. E. (2019). Process mining techniques and applications–A systematic mapping study. Expert Systems with Applications, 133, 260-295.
Došilović, F. K., Brčić, M., & Hlupić, N. (2018, May). Explainable artificial intelligence: A survey. In 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 0210-0215). IEEE.
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public interest, 14(1), 4-58.
Fan, Y., Jovanović, J., Saint, J., Jiang, Y., Wang, Q., & Gašević, D. (2022). Revealing the regulation of learning strategies of MOOC retakers: A learning analytic study. Computers & Education, 178, 104404.
Ibrahim, M., Louie, M., Modarres, C., & Paisley, J. (2019, January). Global explanations of neural networks: Mapping the landscape of predictions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 279-287).
Jovanović, J., Gašević, D., Dawson, S., Pardo, A., & Mirriahi, N. (2017). Learning analytics to unveil learning strategies in a flipped classroom. The Internet and Higher Education, 33(4), 74-85.
Khosravi, H., Shum, S. B., Chen, G., Conati, C., Tsai, Y.-S., Kay, J., Knight, S., Martinez-Maldonado, R., Sadiq, S., & Gašević, D. (2022). Explainable artificial intelligence in education. Computers and Education: Artificial Intelligence, 3, 100074.
Li, L.-Y., & Tsai, C.-C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education, 114, 286-297.
Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology: Applied, 8(3), 147.
Mokoatle, M., Marivate, V., Mapiye, D., Bornman, R., & Hayes, V. (2023). A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. BMC bioinformatics, 24(1), 1-25.
Moreau, C., Chanson, A., Peralta, V., Devogele, T., & de Runz, C. (2021, March). Clustering sequences of multi-dimensional sets of semantic elements. In Proceedings of the 36th Annual ACM Symposium on Applied Computing (pp. 384-391).
O. H.T. Lua, A. Y.Q. Huang, B. Flanagan, H. Ogata, and S. J.H. Yang, “A Quality Data Set for Data Challenge: Featuring 160 Students’ Learning Behaviors and Learning Strategies in a Programming Course,” Asia-Pacific Society for Computers in Education,
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of educational psychology, 82(1), 33.
Ponce, H. R., Mayer, R. E., Loyola, M. S., López, M. J., & Méndez, E. E. (2018). When two computer-supported learning strategies are better than one: An eye-tracking study. Computers & Education, 125, 376-388.
Porter, S. R., Whitcomb, M. E., & Weitzer, W. H. (2004). Multiple surveys of students and survey fatigue. New directions for institutional research, 2004(121), 63-73.
Quadir, B., Chang, M., & Yang, J. C. (2021). Categorizing learning analytics models according to their goals and identifying their relevant components: A review of the learning analytics literature from 2011 to 2019. Computers and Education: Artificial Intelligence, 2, 100034.
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why should i trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
Shapley, L. S. (1953). A value for n-person games.
Tan, T. K., & Samavedham, L. (2022). The learning process matter: A sequence analysis perspective of examining procrastination using learning management system. Computers and Education Open, 3, 100112.
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
Weinstein, C. E., & Mayer, R. E. (1983, November). The teaching of learning strategies. In Innovation abstracts (Vol. 5, No. 32, p. n32).
指導教授 楊鎮華(Jhen-Hua Yang) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明