博碩士論文 110552003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.189.180.76
姓名 胡琦(Chi Hu)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱
(Image Anomaly Detection by GAN Inversion)
相關論文
★  Dynamic Overlay Construction for Mobile Target Detection in Wireless Sensor Networks★ 車輛導航的簡易繞路策略
★ 使用傳送端電壓改善定位★ 利用車輛分類建構車載網路上的虛擬骨幹
★ Why Topology-based Broadcast Algorithms Do Not Work Well in Heterogeneous Wireless Networks?★ 針對移動性目標物的有效率無線感測網路
★ 適用於無線隨意網路中以關節點為基礎的分散式拓樸控制方法★ A Review of Existing Web Frameworks
★ 將感測網路切割成貪婪區塊的分散式演算法★ 無線網路上Range-free的距離測量
★ Inferring Floor Plan from Trajectories★ An Indoor Collaborative Pedestrian Dead Reckoning System
★ Dynamic Content Adjustment In Mobile Ad Hoc Networks★ 以影像為基礎的定位系統
★ 大範圍無線感測網路下分散式資料壓縮收集演算法★ 車用WiFi網路中的碰撞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-7以後開放)
摘要(中) 異常檢測在資料分析領域中起著基石般的作用,對於金融欺詐檢測、醫療診斷、工業缺陷偵測,以及網絡安全等眾多領域具有至關重要的影響。隨著資料規模與複雜性的增加,能有效偵測異常資料的方法變得越來越重要且具有挑戰性。在本研究中,我們提出了利用生成對抗網路(GAN)與編碼器(encoder)的架構來進行異常圖片的偵測,並僅以正常資料作為訓練資料,利用重建誤差(reconstuction error)來進行異常偵測。結果中顯示,我們提出的方法在使用生成對抗網路架構進行異常偵測的偵測能力上,相較於目前領域中最先進的模型仍有更佳的表現。
摘要(英) Anomaly detection is one of the fundamental elements in data analysis, which is crucially influencing various industrial sectors. With the increasing volumes and complexity of the data, finding efficient anomaly detection methods has become increasingly important and challenging. However, the scarcity of anomaly data makes the training of anomaly detection models extremely difficult. To address this issue, this study proposes a method to identify anomalous images utilizing a generative adversarial network (GAN) combined with an encoder structure, leveraging only normal data for training and employing reconstruction error for anomaly detection. The experimental results indicate that our proposed method outperforms the state-of-the-art in anomaly detection using the GAN architecture. Furthermore, we identify an interesting relationship between the problems of anomaly detection and one-class novelty detection.
關鍵字(中) ★ 異常偵測
★ 生成對抗網路
★ 生成對抗網路逆映射
關鍵字(英) ★ Anomaly Detection
★ Generative Adversarial Network
★ GAN Inversion
論文目次 Contents
1 Introduction 1
2 Related Work 4
2.1 Statistical Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Machine Learning Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Deep Learning Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 WGAN-GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Progressive Growing GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 GAN inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Design 13
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Progressive Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.1 One-Class Novelty Detection . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Restricted Latent Space . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Performance 21
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 24
5.4.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 One-Class Novelty Detection . . . . . . . . . . . . . . . . . . . . . . 30
5.4.3 Restricted Latent Space . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Conclusion 37
參考文獻 [1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4432–4441, 2019.
[2] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly: Semi-supervised anomaly detection via adversarial training. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pages 622–637. Springer, 2019.
[3] Martin Arjovsky, Soumith Chintala, and L ́eon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214–223. PMLR, 2017.
[4] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos. Midas: Microcluster-based detector of anomalies in edge streams. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 3242–3249, 2020.
[5] Kevin M Carter and William W Streilein. Probabilistic reasoning for streaming anomaly detection. In 2012 IEEE Statistical Signal Processing Workshop (SSP), pages 377–380. IEEE, 2012.
[6] Lucy Chai, Jonas Wulff, and Phillip Isola. Using latent space regression to analyze and leverage compositionality in gans. arXiv preprint arXiv:2103.10426, 2021.
[7] Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. Editing in style: Uncovering the local semantics of gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5771–5780, 2020.
[8] Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial network. IEEE transactions on neural networks and learning systems, 30(7):1967–1974, 2018.
[9] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages 594–602. SIAM, 2019.
[10] Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes. Deep learning for medical anomaly detection – a survey. ACM Comput. Surv., 54(7), jul 2021.
[11] David Goldberg and Yinan Shan. The importance of features for statistical anomaly detection. In 7th {USENIX} Workshop on Hot Topics in Cloud Computing (Hot-Cloud 15), 2015.
[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020.
[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
[14] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. Statistical analysis of nearest neighbor methods for anomaly detection. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d′Alch ́e-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
[15] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. Advances in neural information processing systems, 30, 2017.
[16] William W Hager. Lipschitz continuity for constrained processes. SIAM Journal on Control and Optimization, 17(3):321–338, 1979.
[17] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504–507, 2006.
[18] Dongxu Huang, Dejun Mu, Libin Yang, and Xiaoyan Cai. Codetect: Financial fraud detection with anomaly feature detection. IEEE Access, 6:19161–19174, 2018.
[19] Arun Abhishek Imayakumar, Anamika Dubey, and Anjan Bose. Anomaly detection for primary distribution system measurements using principal component analysis. In 2020 IEEE Texas Power and Energy Conference (TPEC), pages 1–6. IEEE, 2020.
[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr, 2015.
[21] James M Joyce. Kullback-leibler divergence. In International encyclopedia of statistical science, pages 720–722. Springer, 2011.
[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.
[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[25] Mario K ̈oppen. The curse of dimensionality. In 5th online world conference on soft computing in industrial applications (WSC5), volume 1, pages 4–8, 2000.
[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.
[28] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. A comparative study of anomaly detection schemes in network intrusion detection, pages 25–36. 2003.
[29] Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.
[30] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Future frame prediction for anomaly detection–a new baseline. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6536–6545, 2018.
[31] Qian Ma, Cong Sun, Baojiang Cui, and Xiaohui Jin. A novel model for anomaly detection in network traffic based on kernel support vector machine. Computers & Security, 104:102215, 2021.
[32] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml, volume 30, page 3. Atlanta, Georgia, USA, 2013.
[33] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection, 2016.
[34] ML Men ́endez, JA Pardo, L Pardo, and MC Pardo. The jensen-shannon divergence. Journal of the Franklin Institute, 334(2):307–318, 1997.
[35] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.
[36] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and Jose M ́Alvarez. Invertible conditional gans for image editing. arXiv preprint arXiv:1611.06355, 2016.
[37] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Ocgan: One-class novelty detection using gans with constrained latent representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2898–2906, 2019.
[38] Lex Poon, Siamak Farshidi, Na Li, and Zhiming Zhao. Unsupervised anomaly detection in data quality control. In 2021 IEEE International Conference on Big Data (Big Data), pages 2327–2336, 2021.
[39] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2287–2296, 2021.
[40] Peter J Rousseeuw and Mia Hubert. Anomaly detection by robust statistics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2):e1236, 2018.
[41] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel M ̈uller, and Marius Kloft. Deep one-class classification. In International conference on machine learning, pages 4393–4402. PMLR, 2018.
[42] Thomas Schlegl, Philipp Seeb ̈ock, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceed-
ings, pages 146–157. Springer, 2017.
[43] Muchao Ye, Xiaojiang Peng, Weihao Gan, Wei Wu, and Yu Qiao. Anopcn: Video anomaly detection via deep predictive coding network. In Proceedings of the 27th ACM International Conference on Multimedia, pages 1805–1813, 2019.
[44] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramaseshan Chandrasekhar. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222, 2018.
[45] Zhiwei Zhang, Shifeng Chen, and Lei Sun. P-kdgan: Progressive knowledge distillation with gans for one-class novelty detection. arXiv preprint arXiv:2007.06963, 2020.
[46] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network, 2017.
指導教授 孫敏德(Min-Te Sun) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明