博碩士論文 110522151 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.81.234
姓名 潘柏宇(PO-YU PAN)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 災害和氣象數據於線上地理空間視覺化:3D 表示和動態演進的研究
(Online Geospatial Visualization of Disaster and Meteorological Data: A Study of 3D Representation and Dynamic Evolution)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本研究提出了一種突破性的解決方案,在線上地理空間視覺化地表示氣象和災害數據。該方法基於實時數據計算,將這些數據轉化為地理空間平台和XR技術(包括HoloLens 2和WebAR)可識別的3D模型,實現視覺化。通過地理空間平台,以3D場景的形式展示天氣和災害事件,使用者可以透過網頁和XR設備進行訪問,獲得互動式和沉浸式的體驗。我們採用建模和渲染技術構建數位孿生模型,並將其呈現在Cesium虛擬環境中。Cesium是一個地理空間平台,利用數位孿生技術基於觀測數據模擬真實世界的氣象和災害情景。與傳統方法相比,我們的方法提供了更具動態性的場景,並以動態演進的方式展現了雲層、降雨模式、動態水流、土石流、颱風和鋒面等氣象和災害事件。這種3D 表示和動態演進的呈現方式有助於使用者更直觀地理解和分析氣象和災害事件。幫助人更有效地理解信息和做出決策,也能夠了解台灣自然景色,並且為聯合國永續發展目標(SDGs) 做出貢獻。
摘要(英) This study proposes a breakthrough solution for online geospatial visual representation of meteorological and disaster data. The method is based on real-time data calculations, transforming these data into 3D models recognizable by geospatial platforms and XR technologies (including HoloLens 2 and WebAR) for visualization. Through the geospatial platform, weather and disaster events are displayed in the form of 3D scenes, and users can access them through webpages and XR devices to obtain interactive and immersive experiences. We use modeling and rendering techniques to build a digital twin and present it in the Cesium virtual environment. Cesium is a geospatial platform that utilizes digital twins to simulate real-world meteorological and disaster scenarios based on observational data. Compared with traditional methods, our method provides a more dynamic scene, and presents meteorological and disaster events such as clouds, rainfall patterns, dynamic water flows, landslides, typhoons, and fronts in a dynamically evolving manner. This 3D presentation and dynamic evolution helps users understand and analyze meteorological and disaster events more intuitively. Help people understand information and make decisions more effectively, and also understand Taiwan′s natural scenery, and contribute to the United Nations Sustainable Development Goals (SDGs).
關鍵字(中) ★ 可視化
★ 災難
★ 氣象
★ 地理空間
★ 數字孿生
關鍵字(英) ★ Visualization
★ Disaster
★ Meteorological
★ Geospatial
★ Cesium
★ Digital Twin
論文目次 摘要 vi
ABSTRACT vii
圖目錄 ix
一、 緒論 1
二、相關文獻 5
2.1 Scientific Visualization 5
2.2 Visualization of Meteorology and Disaster 5
2.3 NVIDIA Digital Twin Technology for Climate Change 7
2.4 Research and Application of Geospatial Platform In Recent Years 8
三、 設計目標和方法概述 10
四、 3D可視化呈現方式 12
4.1 Dynamic evolution of disaster warning visualization process 12
4.1.1 3D terrain data import and integration 12
4.1.2 Dynamic display of Cloud and Rain system 13
4.1.3 Dynamic display of Landslide system 16
4.1.4 Dynamic display of river water level 17
4.2 Develop web-based 3D dynamic visualization display model objects 18
4.2.1 Construction Mesh Model and Rendering 18
4.2.2 Use AR and MR technology to display the scene 19
五、 實驗結果 21
5.1 Integrate dynamic contextual process visualization 21
5.2 3D dynamic visualization display model objects 22
六、 結論與未來展望 25
參考文獻 26
參考文獻 [1] D. NS and B. M., “Global warming has increased global economic inequality,” Proc Natl Acad Sci U S A. 2019 May 14;116(20):9808- 9813. doi:, vol. 10., 2019.
[2] L. Al-Ghussain, “Global warming: review on driving forces and mitigation,” Environ Prog Sustainable Energy, vol. 38, pp. 13–21, 2019.
[3] C. D. Ahrens, M. Today, P. Grove, U. C. CA, and Jul, 2008, 2008.
[4] M. Rautenhaus, M. Bottinger, S. Siemen, R. Hoffman, R. M. Kirby, ¨ M. Mirzargar, N. Rober, and R. Westermann, “Visualization in ¨ meteorology—a survey of techniques and tools for data analysis tasks,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 12, pp. 3268–3296, 2018.
[5] P. M. Inness and S. Dorling, Operational Weather Forecasting, Hoboken, NJ, USA:Wiley-Blackwell, 2013.
[6] T. V. Papathomas, J. A. Schiavone, and B. Julesz, “Applications of computer graphics to the visualization of meteorological data,” SIGGRAPH Comput. Graph., vol. 22, no. 4, p. 327–334, jun 1988. [Online]. Available: https://doi.org/10.1145/378456.378538
[7] J. A. Schiavone and T. V. Papathomas, “Visualizing meteorological data,” Bulletin Amer. Meteorological Soc., vol. 71, no, vol. 71, no. 7, pp. 1012–1020, 1990.
[8] T. V. Papathomas, J. Schiavone, and B. Julesz, “Stereo animation for very large data bases: Case study- meteorology,” IEEE Comput. Graph. Appl., vol. 7, no, vol. 7, no. 9, pp. 18–27, Sep. 1987.
[9] W. L. Hibbard, “Computer-generated imagery for 4-d meteorological data,” Bulletin of the American Meteorological Society, vol. 67, no. 11, pp. 1362–1369, 1986. [Online]. Available: http://www.jstor.org/stable/26224661
[10] D. Yu and Z. He, Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities, 2022.
[11] K. M, H. T, S. A, W. R, and R. M., “Interactive 3d visual analysis of atmospheric fronts,” IEEE Trans Vis Comput Graph. 2018 Aug 20. doi:, vol. 10., 2018.
[12] D. M. Schultz and G. Vaughan, “Occluded fronts and the occlusion process: A fresh look at conventional wisdom,” Bulletin of the American Meteorological Society, vol. 92, no. 4, pp. 443–466, 2011. [Online]. Available: http://www.jstor.org/stable/26226861
[13] X. Yu and Y. Xu, “Building a 3d visualization system for the geological survey,” in 2015 2nd International Conference on Information Science and Control Engineering, 2015, pp. 641–644.
[14] A. A. Alesheikh, H. Helali, and H. Behroz, Web GIS: technologies and its applications. Symposium on geospatial theory processing and applications, 2002.
[15] W. Yin et al., “An integrated design for geospatial analysis based on WebGIS,” IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), vol. 10., pp. 1890–1894, 2019.
[16] Z. Liang, B. NuErTaYi, Y. Xu, F. Zhang, J. Yang, and J. Wang, “Application of multidimensional data visualization technology and WebGIS in lightweight visualization system design,” 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), vol. 10., pp. 1–4, 2021.
[17] L.-H. Chen, H.-M. Hung, C.-Y. Sun, E. H.-K. Wu, and Y. Takama, “Canavi: Synthesizing cartoon-like animation for street navigation based on google maps,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 4, pp. 227–238, 2021.
[18] F. Sang, H. Wu, Z. Liu, and S. Fang, “Digital twin platform design for zhejiang rural cultural tourism based on unreal engine,” 2022 International Conference on Culture-Oriented Science and Technology (CoST), vol. 10., pp. 274–278, 2022.
[19] A. Ren, C. Chen, J. Shi, and L. Zou, “Application of virtual reality technology to evacuation simulation in fire disaster,” in International Conference on Computer Graphics and Virtual Reality, 2006.
[20] R. H. Harrap, J. Sala, Z. Ondercin, M. Difrancesco, and Paul-Mark, Our GIS is a Game Engine: Bringing Unity to Spatial Simulation of Rockfalls. GeoComputation 2019, 2019.
[21] Y.-J. Huang, T. Fujiwara, Y.-X. Lin, W.-C. Lin, and K.-L. Ma, “A gesture system for graph visualization in virtual reality environments,” in 2017 IEEE Pacific Visualization Symposium (PacificVis), 2017, pp. 41–45.
[22] S. Bhowmick, “Exploring body gestures for small object selection in dense environment in hmd vr for data visualization applications,” in 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2021, pp. 713–714.
[23] G. Drossis, C. Birliraki, G. Margetis, and C. Stephanidis, “Immersive 3d environment for data centre monitoring based on gesture based interaction,” In: Stephanidis, C. (eds) HCI International, vol. 2017, 2017.
[24] S.-C. Yeh, H. Hu, S.-R. Sheng, and Y.-R. Wu, “Interactive visualization system of 3-d digital elevation model for mountain collapse simulation,” in 2022 8th International Conference on Applied System Innovation (ICASI), 2022, pp. 152–155.
[25] M. Grieves, Origins of the Digital Twin Concept. Fla. Inst. Technol, 2016.
[26] L. Wang, R. Pi, X. Zhou, and H. Zhou, “The construction of off-line map based on openstreetmap and leaflet,” in Proceedings of the 2015 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Atlantis Press, 2015/11, pp. 1471–1475. [Online]. Available: https://doi.org/10.2991/iccmcee-15.2015.277
[27] T. Horbinski and D. Lorek, “The use of leaflet and ´ geojson files for creating the interactive web map of the preindustrial state of the natural environment,” Journal of Spatial Science, vol. 67, no. 1, pp. 61–77, 2022. [Online]. Available: https://doi.org/10.1080/14498596.2020.1713237
[28] M. Letic, K. Nenadi ´ c, and L. Nikoli ´ c, “Real-time map projection in ´ virtual reality using webvr,” in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2018, pp. 1439–1443. 13
[29] D. Laksono and T. Aditya, “Utilizing a game engine for interactive 3d topographic data visualization,” ISPRS International Journal of Geo-Information, vol. 8, no. 8, 2019. [Online]. Available: https://www.mdpi.com/2220-9964/8/8/361
[30] J. Hunter, C. Brooking, L. Reading, and S. Vink, “A web-based system enabling the integration, analysis, and 3d sub-surface visualization of groundwater monitoring data and geological models,” International Journal of Digital Earth, vol. 9, no. 2, pp. 197–214, 2016. [Online]. Available: https://doi.org/10.1080/17538947.2014.1002866
[31] M. Buyukdemircioglu and S. Kocaman, : A 3D CAMPUS APPLICATION BASED ON CITY MODELS AND WEBGL. Int. Arch. Photogramm, 2018.
[32] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm.” in ’SIGGRAPH’, ACM,, M. C. Stone, Ed., 1987, pp. 163–169.
指導教授 吳曉光(Wu, Eric HsiaoKuang) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明