博碩士論文 109328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.144.40.239
姓名 陳尚緯(Shang-Wei Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 加濕模擬垃圾掩埋氣固態氧化物燃料電池之 性能與穩定性量測
(Cell Performance and Stability Measurements of Solid Oxide Fuel Cell using Humidified Simulated Landfill Gas)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 本論文探討加濕效應對使用模擬垃圾掩埋氣(Landfill Gas, LFG)為燃料之固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)所產生碳沉積之影響。我們在已建立之雙腔體SOFC測試系統,量測鈕扣型陽極支撐電池(Ni-YSZ/YSZ/LSC-GDC)在三個不同LFG比例(CO2:CH4 = 40:60, 50:50, 60:40)、三個不同溫度(T = 700, 750, 800℃)、三個不同蒸氣甲烷比(S/M = 0, 0.5, 1)的電池性能、電化學阻抗頻譜和穩定性。結果顯示:(1)在700℃時,有最低的甲烷轉化率、最大的活化極化和最低的電池性能,其電池性能隨S/M增加而輕微上升;(2)在T = 800℃ 和 S/M = 1 時,陽極鎳氧化會發生,歐姆極化會顯著增加,造成電池劣化,使性能低於S/M = 0和0.5;(3)優化的操作條件為T = 750℃ 和 S/M = 0.5,此時碳沉積明顯減少,電池性能幾無衰退,可維持穩定操作至少120小時以上;(4)由X光繞射儀與掃描式電子顯微鏡的分析推論出以LFG為SOFC的燃料,若添加適量的水蒸氣可以有效防止電池微結構被碳沉積所破壞,明顯改善電池性能的穩定性。前述結果對使用垃圾掩埋氣為燃料之SOFCs應有所助益。
摘要(英) This thesis investigates the effect of humidification on carbon deposition of solid oxide fuel cell (SOFC) fed by simulated landfill gas. Measurements of cell performance, electrochemical impedance spectroscopy (EIS) and stability of an anode-supported button cell (Ni-YSZ/YSZ/LSC-GDC) are conducted in a dual-chamber SOFC testing facility at three different compositions of LFG (CO2:CH4 = 40:60, 50:50, 60:40), at three different temperatures (T = 700, 750, 800℃), and at three different steam-to-methane ratios (S/M = 0, 0.5, 1). Results show: (1) The methane conversion rate is the lowest at 700℃ and it increases slightly with increasing S/M, having the largest activation polarization and the lowest cell performance. (2) The Ni oxidation in anode occurs when T = 800℃ and S/M = 1, in which the ohmic polarization increases noticeably resulting in cell degradation, of a lower power density than that at S/M = 0 and 0.5. (3) It is found that the optimized operating conditions are at T = 750℃ and S/M = 0.5, of which the carbon deposition can be significantly reduced where the cell performance can remain nearly stable for at least 120 hours during the stability test. (4) The X-ray diffractometer (XRD) and scanning electron microscope (SEM) results infers that moderate steam addition can prevents the cell microstructure broken by carbon deposition, which improves the stability of the cell performance obviously, when using LFG as fuel of SOFC. These results should be useful for SOFCs using landfill gas as a fuel.
關鍵字(中) ★ 固態氧化物燃料電池
★ 模擬垃圾掩埋氣
★ 甲烷雙重組
★ 穩定性測試
★ 碳沉積
關鍵字(英) ★ Solid Oxide Fuel Cell
★ Simulated Landfill Gas
★ Methane Bi-reforming
★ Stability Test
★ Carbon Deposition
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文綱要 4
第二章 文獻回顧 5
2.1 本實驗室相關研究回顧 5
2.2 加濕沼氣SOFC之碳沉積相關研究 9
2.2.1 垃圾掩埋氣成分 9
2.2.2 燃料可變性對沼氣SOFC的影響 10
2.2.3 加濕效應對沼氣重組的影響 15
2.3 用於預測碳沉積的CHO三元圖 18
第三章 實驗設備與量測方法 20
3.1 SOFC實驗設備 20
3.1.1 高溫高壓雙腔體SOFC實驗設備 20
3.1.2 鈕扣型陽極支撐電池片及其載具 23
3.2 實驗流程與參數設定 25
第四章 結果與討論 28
4.1 SOFC在700℃-800℃的LFG組成效應 28
4.2 SOFC在700℃-800℃的LFG組成效應 35
4.3 SOFC在750℃對應不同LFG組成的加濕效應 41
4.4 加濕效應對SOFC使用LFG為燃料的穩定性與碳沉積研究 47
4.4.1 在750℃,S/M = 0和0.5的SOFC穩定性研究 47
4.4.2 以XRD和SEM分析測試後電池片的碳沉積 49
第五章 結論與未來工作 54
5.1 結論 54
5.2 未來工作 55
參考文獻 56


參考文獻 參考文獻
[1] 行政院環境保護署,“清理管理”,2021。(https://www.epa.gov.tw/Page/16FAB5046B4F80FC)
[2] United States Environmental Protection Agency, Basic information about landfill gas, 2022
(https://www.epa.gov/lmop/basic-information-about-landfill-gas).
[3] J. Kirtley, A. Singh, D. Halat, T. Oswell, J.M. Hill, R.A. Walker, In situ Raman studies of carbon removal from high temperature Ni–YSZ cermet anodes by gas phase reforming agents, J. Phys. Chem. C, 117 (2013) 25908-25916 (https://pubs.acs.org/doi/10.1021/jp408192e).
[4] V. Subotić, C. Schluckner, B. Stoeckl, M. Preininger, V. Lawlor, S. Pofahl, H. Schroettner, C. Hochenauer, Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation, Energy Convers. Manage., 178 (2018) 343-354
(https://doi.org/10.1016/j.enconman.2018.10.022).
[5] C. Choe, S. Cheon, J. Gu, H. Lim, Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source, Renewable Sustainable Energy Rev., 161 (2022) 112398
(https://doi.org/10.1016/j.rser.2022.112398).
[6] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013年6月。
[7] 李秉英,添加氨氣的合成氣固態氧化物燃電池性能與穩定性實驗研究,碩士論文,國立中央大學,2021年1月。
[8] 王稚元,加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響,碩士論文,國立中央大學,2021年10月。
[9] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources, 171 (2007) 169-178 (https://doi.org/10.1016/j.jpowsour.2006.12.029).
[10] R.J. Kee, H. Zhu, A.M. Sukeshini, G.S. Jackson, Solid oxide fuel cells: operating principles, current challenges, and the role of syngas, Combust. Sci. Technol., 180 (2008) 1207-1244
(https://doi.org/10.1080/00102200801963458).
[11] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46 (2021) 27643-27674 (https://doi.org/10.1016/j.ijhydene.2021.06.020).
[12] H. Zhu, R.J. Kee, Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies, J. Electrochem. Soc., 155 (2008) B715 (https://iopscience.iop.org/article/10.1149/1.2913152).
[13] M. Shen, P. Zhang, Progress and challenges of cathode contact layer for solid oxide fuel cell, Int. J. Hydrogen Energy, 45 (2020) 33876-33894
(https://doi.org/10.1016/j.ijhydene.2020.09.147).
[14] A. Leonide, Y. Apel, E. Ivers-Tiffee, SOFC modeling and parameter identification by means of impedance spectroscopy, ECS Trans., 19 (2009) 81 (https://iopscience.iop.org/article/10.1149/1.3247567).
[15] V. Subotić, C. Schluckner, J. Strasser, V. Lawlor, J. Mathe, J. Rechberger, H. Schroettner, C. Hochenauer, In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells part I: methodology, qualification and detection of carbon deposition, Electrochim. Acta, 207 (2016) 224-236 (https://doi.org/10.1016/j.electacta.2016.05.025).
[16] J. Jia, A. Abudula, L. Wei, B. Sun, Y. Shi, Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system, Renew. Energy, 81 (2015) 400-410 (https://doi.org/10.1016/j.renene.2015.03.030).
[17] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors, 21 (2021) 6578 (https://doi.org/10.3390/s21196578).
[18] Z. Chen, L. Bian, L. Wang, N. Chen, H. Zhao, F. Li, K. Chou, Effect of hydrogen and carbon dioxide on the performance of methane fueled solid oxide fuel cell, Int. J. Hydrogen Energy, 41 (2016) 7453-7463
(https://doi.org/10.1016/j.ijhydene.2016.03.090).
[19] O. Rahumi, A. Sobolev, M.K. Rath, K. Borodianskiy, Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing, J. Eur. Ceram. Soc., 41 (2021) 4528-4536
(https://doi.org/10.1016/j.jeurceramsoc.2021.03.017).
[20] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode, Solid State Ion., 132 (2000) 279-285 (https://doi.org/10.1016/S0167-2738(00)00642-1).
[21] J.R. Macdonald, Impedance spectroscopy, Ann Biomed Eng., 20 (1992) 289-305 (https://link.springer.com/article/10.1007/BF02368532).
[22] T. Matsui, T. Fujinaga, R. Shimizu, T. Ozeki, H. Muroyama, K. Eguchi, Degradation behavior of solid oxide fuel cells operated at high fuel utilization, J. Electrochem. Soc., 168 (2021) 104509
(https://iopscience.iop.org/article/10.1149/1945-7111/ac27dc).
[23] M. Gallo, P. Polverino, J. Mougin, B. Morel, C. Pianese, Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction, Appl. Energy, 279 (2020) 115718 (https://doi.org/10.1016/j.apenergy.2020.115718).
[24] S. Shy, Y. Hsieh, C. Huang, Y. Chan, Comparison of electrochemical impedance measurements between pressurized anode-supported and electrolyte-supported planar solid oxide fuel cells, J. Electrochem. Soc., 162 (2014) F172 (https://iopscience.iop.org/article/10.1149/2.0041503jes).
[25] P. Wu, H. Jheng, S.S. Shy, Pressurized solid oxide fuel cells: measurements of impedance spectra and anodic concentration polarization, ECS Trans., 57 (2013) 215
(https://iopscience.iop.org/article/10.1149/05701.0215ecst).
[26] J. D. Liang, L. H. Hong, P. Wu, S.S. Shy, A simple pressurized SOFC test rig for measurements of cell performance, impedance, and various overvoltages, ECS Trans., 68 (2015) 2179
(https://iopscience.iop.org/article/10.1149/06801.2179ecst/meta).
[27] S.S. Shy, Y. Hsieh, J.-D. Liang, The impact of pressurization on anode-supported and electrolyte-supported planar solid oxide fuel cells at 750℃~850℃, ECS Trans., 68 (2015) 2169
(https://iopscience.iop.org/article/10.1149/06801.2169ecst/meta)
[28] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, J. Power Sources, 299 (2015) 1-10 (https://doi.org/10.1016/j.jpowsour.2015.08.080).
[29] P.C. Wu, S.S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1–5 atm and 750–850℃, J. Power Sources, 362 (2017) 105-114 (https://doi.org/10.1016/j.jpowsour.2017.07.030).
[30] S.S. Shy, Y. Hung, Z. Chou, Z. Bong, J. Jhao, Pressurized ammonia and syngas planar anode-supported solid oxide fuel cells and their performance stability test, ECS Trans., 91 (2019) 745
(https://iopscience.iop.org/article/10.1149/09101.0745ecst).
[31] 洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,2016年11月。
[32] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,碩士論文,國立中央大學,2018年1月。
[33] 王證亮,加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測,碩士論文,國立中央大學,2020年1月。
[34] 蔡安傑,合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測,碩士論文,國立中央大學,2021年1月。
[35] 周政憲,平板式加壓型合成氣固態氧化物燃料電池實驗研究,碩士論文,國立中央大學,2018年10月。
[36] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,2014年6月。
[37] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,2015年9月。
[38] J. Staniforth, K. Kendall, Biogas powering a small tubular solid oxide fuel cell, J. Power Sources, 71 (1998) 275-277
(https://doi.org/10.1016/S0378-7753(97)02762-6).
[39] R. Broun, M. Sattler, A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills, J. Clean. Prod., 112 (2016) 2664-2673
(https://doi.org/10.1016/j.jclepro.2015.10.010).
[40] A. Hagen, H. Langnickel, X. Sun, Operation of solid oxide fuel cells with alternative hydrogen carriers, Int. J. Hydrogen Energy, 44 (2019) 18382-18392 (https://doi.org/10.1016/j.ijhydene.2019.05.065).
[41] C.S. Lau, D. Allen, A. Tsolakis, S.E. Golunski, M.L. Wyszynski, Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming, Biomass Bioenergy, 40 (2012) 86-95
(https://doi.org/10.1016/j.biombioe.2012.02.004).
[42] S. Rasi, J. Lehtinen, J. Rintala, Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants, Renew. Energy, 35 (2010) 2666-2673
(https://doi.org/10.1016/j.renene.2010.04.012).
[43] P.S. Roy, J. Song, K. Kim, C.S. Park, A.S. Raju, CO2 conversion to syngas through the steam-biogas reforming process, J. CO2 Util., 25 (2018) 275-282 (https://doi.org/10.1016/j.jcou.2018.04.013).
[44] H. Zhang, W. Liu, J. Wang, J. Yang, Y. Chen, W. Guan, S.C. Singhal, Power generation from a symmetric flat-tube solid oxide fuel cell using direct internal dry-reforming of methane, J. Power Sources, 516 (2021) 230662
(https://doi.org/10.1016/j.jpowsour.2021.230662).
[45] Z. Lyu, Y. Wang, Y. Zhang, M. Han, Solid oxide fuel cells fueled by simulated biogas: Comparison of anode modification by infiltration and reforming catalytic layer, Chem. Eng. J., 393 (2020) 124755
(https://doi.org/10.1016/j.cej.2020.124755).
[46] Z. Lyu, W. Shi, M. Han, Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane, Appl. Energy, 228 (2018) 556-567
(https://doi.org/10.1016/j.apenergy.2018.06.114).
[47] M. Pillai, Y. Lin, H. Zhu, R.J. Kee, S.A. Barnett, Stability and coking of direct-methane solid oxide fuel cells: Effect of CO2 and air additions, J. Power Sources, 195 (2010) 271-279
(https://doi.org/10.1016/j.jpowsour.2009.05.032).
[48] D. Fan, Y. Gao, F. Liu, T. Wei, Z. Ye, Y. Ling, B. Chen, Y. Zhang, M. Ni, D. Dong, Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation, J. Power Sources, 513 (2021) 230536 (https://doi.org/10.1016/j.jpowsour.2021.230536).
[49] P.P.S. Quirino, A.F. Amaral, F. Manenti, K.V. Pontes, Mapping and optimization of an industrial steam methane reformer by the design of experiments (DOE), Chem. Eng. Res. Des., 184 (2022) 349-365
(https://doi.org/10.1016/j.cherd.2022.05.035).
[50] P.S. Roy, C.S. Park, A.S. Raju, K. Kim, Steam-biogas reforming over a metal-foam-coated (Pd–Rh)/(CeZrO2–Al2O3) catalyst compared with pellet type alumina-supported Ru and Ni catalysts, J. CO2 Util., 12 (2015) 12-20 (https://doi.org/10.1016/j.jcou.2015.09.003).
[51] T. Kushi, Performance and durability evaluation of dry reforming in solid oxide fuel cells, Int. J. Hydrogen Energy, 41 (2016) 17567-17576
(https://doi.org/10.1016/j.ijhydene.2016.07.025).
[52] K. Sasaki, Y. Teraoka, Equilibria in Fuel Cell Gases : II. The C-H-O Ternary Diagrams, J. Electrochem. Soc., 150 (2003) A885
(https://iopscience.iop.org/article/10.1149/1.1577338).
[53] R.J. Kee, C. Karakaya, H. Zhu, Process intensification in the catalytic conversion of natural gas to fuels and chemicals, Proc. Combust. Inst., 36 (2017) 51-76
(https://doi.org/10.1016/j.proci.2016.06.014).
[54] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ion., 152-153 (2002) 411-416 (https://doi.org/10.1016/S0167-2738(02)00351-X).
[55] H. Miao, G. Liu, T. Chen, C. He, J. Peng, S. Ye, W.G. Wang, Behavior of anode-supported SOFCs under simulated syngases, J. Solid State Electrochem., 19 (2015) 639-646
(https://link.springer.com/article/10.1007/s10008-014-2640-7).
[56] A.C. Chien, E.Y. Lin, A.D. Lai, Aid of a metallic functional layer on Ni/YSZ anode for Direct Methane Fuel Cell, Int. J. Hydrogen Energy, 45 (2020) 23526-23532 (https://doi.org/10.1016/j.ijhydene.2020.06.169).
[57] Y. Lei, T.-L. Cheng, H. Abernathy, W. Epting, T. Kalapos, G. Hackett, Y. Wen, Phase field simulation of anode microstructure evolution of solid oxide fuel cell through Ni(OH)2 diffusion, J. Power Sources, 482 (2021) 228971.
(https://doi.org/10.1016/j.jpowsour.2020.228971)
[58] R. Wang, T. Wang, Y. Ma, T. Wei, Z. Ye, B. Chen, D. Dong, Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface, J. Power Sources, 544 (2022) 231854
(https://doi.org/10.1016/j.jpowsour.2022.231854).
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2022-12-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明