參考文獻 |
參考文獻
[1] 行政院環境保護署,“清理管理”,2021。(https://www.epa.gov.tw/Page/16FAB5046B4F80FC)
[2] United States Environmental Protection Agency, Basic information about landfill gas, 2022
(https://www.epa.gov/lmop/basic-information-about-landfill-gas).
[3] J. Kirtley, A. Singh, D. Halat, T. Oswell, J.M. Hill, R.A. Walker, In situ Raman studies of carbon removal from high temperature Ni–YSZ cermet anodes by gas phase reforming agents, J. Phys. Chem. C, 117 (2013) 25908-25916 (https://pubs.acs.org/doi/10.1021/jp408192e).
[4] V. Subotić, C. Schluckner, B. Stoeckl, M. Preininger, V. Lawlor, S. Pofahl, H. Schroettner, C. Hochenauer, Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation, Energy Convers. Manage., 178 (2018) 343-354
(https://doi.org/10.1016/j.enconman.2018.10.022).
[5] C. Choe, S. Cheon, J. Gu, H. Lim, Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source, Renewable Sustainable Energy Rev., 161 (2022) 112398
(https://doi.org/10.1016/j.rser.2022.112398).
[6] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013年6月。
[7] 李秉英,添加氨氣的合成氣固態氧化物燃電池性能與穩定性實驗研究,碩士論文,國立中央大學,2021年1月。
[8] 王稚元,加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響,碩士論文,國立中央大學,2021年10月。
[9] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources, 171 (2007) 169-178 (https://doi.org/10.1016/j.jpowsour.2006.12.029).
[10] R.J. Kee, H. Zhu, A.M. Sukeshini, G.S. Jackson, Solid oxide fuel cells: operating principles, current challenges, and the role of syngas, Combust. Sci. Technol., 180 (2008) 1207-1244
(https://doi.org/10.1080/00102200801963458).
[11] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46 (2021) 27643-27674 (https://doi.org/10.1016/j.ijhydene.2021.06.020).
[12] H. Zhu, R.J. Kee, Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies, J. Electrochem. Soc., 155 (2008) B715 (https://iopscience.iop.org/article/10.1149/1.2913152).
[13] M. Shen, P. Zhang, Progress and challenges of cathode contact layer for solid oxide fuel cell, Int. J. Hydrogen Energy, 45 (2020) 33876-33894
(https://doi.org/10.1016/j.ijhydene.2020.09.147).
[14] A. Leonide, Y. Apel, E. Ivers-Tiffee, SOFC modeling and parameter identification by means of impedance spectroscopy, ECS Trans., 19 (2009) 81 (https://iopscience.iop.org/article/10.1149/1.3247567).
[15] V. Subotić, C. Schluckner, J. Strasser, V. Lawlor, J. Mathe, J. Rechberger, H. Schroettner, C. Hochenauer, In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells part I: methodology, qualification and detection of carbon deposition, Electrochim. Acta, 207 (2016) 224-236 (https://doi.org/10.1016/j.electacta.2016.05.025).
[16] J. Jia, A. Abudula, L. Wei, B. Sun, Y. Shi, Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system, Renew. Energy, 81 (2015) 400-410 (https://doi.org/10.1016/j.renene.2015.03.030).
[17] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors, 21 (2021) 6578 (https://doi.org/10.3390/s21196578).
[18] Z. Chen, L. Bian, L. Wang, N. Chen, H. Zhao, F. Li, K. Chou, Effect of hydrogen and carbon dioxide on the performance of methane fueled solid oxide fuel cell, Int. J. Hydrogen Energy, 41 (2016) 7453-7463
(https://doi.org/10.1016/j.ijhydene.2016.03.090).
[19] O. Rahumi, A. Sobolev, M.K. Rath, K. Borodianskiy, Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing, J. Eur. Ceram. Soc., 41 (2021) 4528-4536
(https://doi.org/10.1016/j.jeurceramsoc.2021.03.017).
[20] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode, Solid State Ion., 132 (2000) 279-285 (https://doi.org/10.1016/S0167-2738(00)00642-1).
[21] J.R. Macdonald, Impedance spectroscopy, Ann Biomed Eng., 20 (1992) 289-305 (https://link.springer.com/article/10.1007/BF02368532).
[22] T. Matsui, T. Fujinaga, R. Shimizu, T. Ozeki, H. Muroyama, K. Eguchi, Degradation behavior of solid oxide fuel cells operated at high fuel utilization, J. Electrochem. Soc., 168 (2021) 104509
(https://iopscience.iop.org/article/10.1149/1945-7111/ac27dc).
[23] M. Gallo, P. Polverino, J. Mougin, B. Morel, C. Pianese, Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction, Appl. Energy, 279 (2020) 115718 (https://doi.org/10.1016/j.apenergy.2020.115718).
[24] S. Shy, Y. Hsieh, C. Huang, Y. Chan, Comparison of electrochemical impedance measurements between pressurized anode-supported and electrolyte-supported planar solid oxide fuel cells, J. Electrochem. Soc., 162 (2014) F172 (https://iopscience.iop.org/article/10.1149/2.0041503jes).
[25] P. Wu, H. Jheng, S.S. Shy, Pressurized solid oxide fuel cells: measurements of impedance spectra and anodic concentration polarization, ECS Trans., 57 (2013) 215
(https://iopscience.iop.org/article/10.1149/05701.0215ecst).
[26] J. D. Liang, L. H. Hong, P. Wu, S.S. Shy, A simple pressurized SOFC test rig for measurements of cell performance, impedance, and various overvoltages, ECS Trans., 68 (2015) 2179
(https://iopscience.iop.org/article/10.1149/06801.2179ecst/meta).
[27] S.S. Shy, Y. Hsieh, J.-D. Liang, The impact of pressurization on anode-supported and electrolyte-supported planar solid oxide fuel cells at 750℃~850℃, ECS Trans., 68 (2015) 2169
(https://iopscience.iop.org/article/10.1149/06801.2169ecst/meta)
[28] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, J. Power Sources, 299 (2015) 1-10 (https://doi.org/10.1016/j.jpowsour.2015.08.080).
[29] P.C. Wu, S.S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1–5 atm and 750–850℃, J. Power Sources, 362 (2017) 105-114 (https://doi.org/10.1016/j.jpowsour.2017.07.030).
[30] S.S. Shy, Y. Hung, Z. Chou, Z. Bong, J. Jhao, Pressurized ammonia and syngas planar anode-supported solid oxide fuel cells and their performance stability test, ECS Trans., 91 (2019) 745
(https://iopscience.iop.org/article/10.1149/09101.0745ecst).
[31] 洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,2016年11月。
[32] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,碩士論文,國立中央大學,2018年1月。
[33] 王證亮,加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測,碩士論文,國立中央大學,2020年1月。
[34] 蔡安傑,合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測,碩士論文,國立中央大學,2021年1月。
[35] 周政憲,平板式加壓型合成氣固態氧化物燃料電池實驗研究,碩士論文,國立中央大學,2018年10月。
[36] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,2014年6月。
[37] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,2015年9月。
[38] J. Staniforth, K. Kendall, Biogas powering a small tubular solid oxide fuel cell, J. Power Sources, 71 (1998) 275-277
(https://doi.org/10.1016/S0378-7753(97)02762-6).
[39] R. Broun, M. Sattler, A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills, J. Clean. Prod., 112 (2016) 2664-2673
(https://doi.org/10.1016/j.jclepro.2015.10.010).
[40] A. Hagen, H. Langnickel, X. Sun, Operation of solid oxide fuel cells with alternative hydrogen carriers, Int. J. Hydrogen Energy, 44 (2019) 18382-18392 (https://doi.org/10.1016/j.ijhydene.2019.05.065).
[41] C.S. Lau, D. Allen, A. Tsolakis, S.E. Golunski, M.L. Wyszynski, Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming, Biomass Bioenergy, 40 (2012) 86-95
(https://doi.org/10.1016/j.biombioe.2012.02.004).
[42] S. Rasi, J. Lehtinen, J. Rintala, Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants, Renew. Energy, 35 (2010) 2666-2673
(https://doi.org/10.1016/j.renene.2010.04.012).
[43] P.S. Roy, J. Song, K. Kim, C.S. Park, A.S. Raju, CO2 conversion to syngas through the steam-biogas reforming process, J. CO2 Util., 25 (2018) 275-282 (https://doi.org/10.1016/j.jcou.2018.04.013).
[44] H. Zhang, W. Liu, J. Wang, J. Yang, Y. Chen, W. Guan, S.C. Singhal, Power generation from a symmetric flat-tube solid oxide fuel cell using direct internal dry-reforming of methane, J. Power Sources, 516 (2021) 230662
(https://doi.org/10.1016/j.jpowsour.2021.230662).
[45] Z. Lyu, Y. Wang, Y. Zhang, M. Han, Solid oxide fuel cells fueled by simulated biogas: Comparison of anode modification by infiltration and reforming catalytic layer, Chem. Eng. J., 393 (2020) 124755
(https://doi.org/10.1016/j.cej.2020.124755).
[46] Z. Lyu, W. Shi, M. Han, Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane, Appl. Energy, 228 (2018) 556-567
(https://doi.org/10.1016/j.apenergy.2018.06.114).
[47] M. Pillai, Y. Lin, H. Zhu, R.J. Kee, S.A. Barnett, Stability and coking of direct-methane solid oxide fuel cells: Effect of CO2 and air additions, J. Power Sources, 195 (2010) 271-279
(https://doi.org/10.1016/j.jpowsour.2009.05.032).
[48] D. Fan, Y. Gao, F. Liu, T. Wei, Z. Ye, Y. Ling, B. Chen, Y. Zhang, M. Ni, D. Dong, Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation, J. Power Sources, 513 (2021) 230536 (https://doi.org/10.1016/j.jpowsour.2021.230536).
[49] P.P.S. Quirino, A.F. Amaral, F. Manenti, K.V. Pontes, Mapping and optimization of an industrial steam methane reformer by the design of experiments (DOE), Chem. Eng. Res. Des., 184 (2022) 349-365
(https://doi.org/10.1016/j.cherd.2022.05.035).
[50] P.S. Roy, C.S. Park, A.S. Raju, K. Kim, Steam-biogas reforming over a metal-foam-coated (Pd–Rh)/(CeZrO2–Al2O3) catalyst compared with pellet type alumina-supported Ru and Ni catalysts, J. CO2 Util., 12 (2015) 12-20 (https://doi.org/10.1016/j.jcou.2015.09.003).
[51] T. Kushi, Performance and durability evaluation of dry reforming in solid oxide fuel cells, Int. J. Hydrogen Energy, 41 (2016) 17567-17576
(https://doi.org/10.1016/j.ijhydene.2016.07.025).
[52] K. Sasaki, Y. Teraoka, Equilibria in Fuel Cell Gases : II. The C-H-O Ternary Diagrams, J. Electrochem. Soc., 150 (2003) A885
(https://iopscience.iop.org/article/10.1149/1.1577338).
[53] R.J. Kee, C. Karakaya, H. Zhu, Process intensification in the catalytic conversion of natural gas to fuels and chemicals, Proc. Combust. Inst., 36 (2017) 51-76
(https://doi.org/10.1016/j.proci.2016.06.014).
[54] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ion., 152-153 (2002) 411-416 (https://doi.org/10.1016/S0167-2738(02)00351-X).
[55] H. Miao, G. Liu, T. Chen, C. He, J. Peng, S. Ye, W.G. Wang, Behavior of anode-supported SOFCs under simulated syngases, J. Solid State Electrochem., 19 (2015) 639-646
(https://link.springer.com/article/10.1007/s10008-014-2640-7).
[56] A.C. Chien, E.Y. Lin, A.D. Lai, Aid of a metallic functional layer on Ni/YSZ anode for Direct Methane Fuel Cell, Int. J. Hydrogen Energy, 45 (2020) 23526-23532 (https://doi.org/10.1016/j.ijhydene.2020.06.169).
[57] Y. Lei, T.-L. Cheng, H. Abernathy, W. Epting, T. Kalapos, G. Hackett, Y. Wen, Phase field simulation of anode microstructure evolution of solid oxide fuel cell through Ni(OH)2 diffusion, J. Power Sources, 482 (2021) 228971.
(https://doi.org/10.1016/j.jpowsour.2020.228971)
[58] R. Wang, T. Wang, Y. Ma, T. Wei, Z. Ye, B. Chen, D. Dong, Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface, J. Power Sources, 544 (2022) 231854
(https://doi.org/10.1016/j.jpowsour.2022.231854).
|