參考文獻 |
[1] Global Warming of 1.5 ºC, Intergovernmental panel on climate change. (https://www.ipcc.ch/sr15/).
[2] J. Sullivan, Intergovernmental panel on climate change: 30 years informing global climate action, United Nations Foundation, December 9, 2019 (https://unfoundation.org/blog/post/intergovernmental-panel-climate-change-30-years-informing-global-climate-action/).
[3] D. Jones, Global Electricity Review 2022, Ember, March 30, 2022
(https://ember-climate.org/insights/research/global-electricity-review-2022/).
[4] Z. Wu, P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, Z. Zhang, Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations, Appl. Energy 279 (2020) 115794
(https://doi.org/10.1016/j.apenergy.2020.115794).
[5] E. Soleymani, S. G. Gargari, H. Ghaebi, Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC, Renew. Energy 177 (2021) 495-518
(https://doi.org/10.1016/j.renene.2021.05.103).
[6] S. S. Shy, S. C. Hsieh, H. Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, J. Power Sources 396 (2018) 80-87
(https://doi.org/10.1016/j.jpowsour.2018.06.006).
[7] S. S. Shy, Y. T. Hung, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850°C and its loaded short stability test, Int. J. Hydrog. Energy 45 (2020) 27597-29610
(https://doi.org/10.1016/j.ijhydene.2020.07.064).
[8] P. Qiu, S. Sun, X. Yang, F. Chen, C. Xiong, L. Jia, J. Li, A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells, Int. J. Hydrog. Energy 46 (2021) 25208-25224
(https://doi.org/10.1016/j.ijhydene.2021.05.040).
[9] H. Aslannejad, L. Barelli, A. Babaie, S. Bozorgmehri, Effect of air addition to methane on performance stability and coking over NiO-YSZ anodes of SOFC, Appl. Energy 177 (2016) 179-186
(https://doi.org/10.1016/j.apenergy.2016.05.127).
[10] N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B 60 (2005) 107-116
(https://doi.org/10.1016/j.apcatb.2005.03.001).
[11] X. Kong, Y. Tian, X. Zhou, X. Wu, J. Zhang, Surface tuned La0.9Ca0.1Fe0.9Nb0.1O3-δ based anode for direct methane solid oxide fuel cells by infiltration method, Electrochim. Acta 234 (2017) 71-81
(https://doi.org/10.1016/j.electacta.2017.03.046).
[12] H. Ding, D. Zhou, S. Liu, W. Wu, Y. Yang, Y. Yang, Z. Tao, Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode, Appl. Energy 233-234 (2019) 37-43 (https://doi.org/10.1016/j.apenergy.2018.10.013).
[13] Z. Lyu, H. Li, M. Han, Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane, Int. J. Hydrog. Energy 44 (2019) 12151-12162
(https://doi.org/10.1016/j.ijhydene.2019.03.048).
[14] L. Lei, J. M. Keels, Z. Tao, J. Zhang, F. Chen, Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming, Appl. Energy 224 (2018) 280-288 (https://doi.org/10.1016/j.apenergy.2018.04.062).
[15] S. P. Jiang, S. H. Chan, A review of anode materials development in solid oxide fuel cells, J. Mater. Sci. 39 (2004) 4405-4439
(https://doi.org/10.1023/B:JMSC.0000034135.52164.6b).
[16] G. DiGiuseppe, L. Sun, Electrochemical performance of a solid oxide fuel cell with an LSCF cathode under different oxygen concentrations, Int. J. Hydrog. Energy 36 (2011) 5076-5087
(https://doi.org/10.1016/j.ijhydene.2011.01.017).
[17] T. J. Huang, M. C. Huang, Temperature effect on electrochemical promotion of syngas cogeneration in direct-methane solid oxide fuel cells, J. Power Sources 175 (2008) 473-481
(https://doi.org/10.1016/j.jpowsour.2007.09.061).
[18] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S. D. Li, Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane, Energy 113 (2016) 432-443
(https://doi.org/10.1016/j.energy.2016.07.063).
[19] T. Horita, K. Yamaji, T. Kato, H. Kishimoto, Y. Xiong, N. Sakai, M. E. Brito, H. Yokokawa, Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization, J. Power Sources 145 (2005) 133-138 (https://doi.org/10.1016/j.jpowsour.2004.12.075).
[20] Y. Lyu, J. Xie, D. Wang, J. Wang, Review of cell performance in solid oxide fuel cells, J. Mater. Sci. 55 (2020) 7184-7207
(https://doi.org/10.1007/s10853-020-04497-7).
[21] H. Su, Y. H. Hu, Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels, Chem. Eng. J. 402 (2020) 126235
(https://doi.org/10.1016/j.cej.2020.126235).
[22] S. McIntosh, R. J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104 (2004) 4845-4866 (https://doi.org/10.1021/cr020725g).
[23] E. D. Wachsman, K. T. Lee, Lowering the temperature of solid oxide fuel cells, Science 334 (2011) 935-939
(https://www.science.org/doi/10.1126/science.1204090).
[24] P. C. Wu, S. S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850℃, J. Power Sources 362 (2017) 105-114 (https://doi.org/10.1016/j.jpowsour.2017.07.030).
[25] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013年6月。
[26] 李秉霙,添加氨氣的合成氣固態氧化物燃料電池性能與穩定性實驗研究,碩士論文,國立中央大學,2021年1月。
[27] 王稚元,加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響,碩士論文,國立中央大學,2021年10月。
[28] 蔡安傑,合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測,碩士論文,國立中央大學,2021年1月。
[29] 呂育緯,熱循環、添加氫氣、加壓效應還原氮化鎳對平板氨氣SOFCs之效應,碩士論文,國立中央大學,2021年1月。
[30] N. Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76 (1993) 563-588 (https://doi.org/10.1111/j.1151-2916.1993.tb03645.x).
[31] X. D. Zhou, L. R. Pederson, J. W. Templeton, J. W. Stevenson, Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. cross validation of polarization measurements by impedance spectroscopy and current-potential sweep, J. Electrochem. Soc. 157 (2010) 220-227 (10.1149/1.3263903).
[32] N. Biswas, D. Bhattacharya, M. Kumar, J. Mukhopadhyay, R. N. Basu, P. K. Das, Effect of oxygen diffusion constraints on the performance of planar solid oxide fuel cells for variable oxygen concentration, Ind. Eng. Chem. Res. 59 (2020) 18844-18856 (https://doi.org/10.1021/acs.iecr.0c00628).
[33] H. B. Moussa, B. Zitouni, K. Oulmi, B. Mahmah, M. Belhamel, P. Mandin, Hydrogen consumption and power density in a co-flow planar SOFC, Int. J. Hydrog. Energy 34 (2009) 5022-5031
(https://doi.org/10.1016/j.ijhydene.2008.12.034).
[34] W. G. Bessler, S. Gewies, C. Willich, G. Schiller, K. A. Friedrich, Spatial distribution of electrochemical performance in a segmented SOFC: A combined modeling and experimental study, Fuel Cells 10 (2010) 411-418 (https://doi.org/10.1002/fuce.200900083).
[35] J. Nielsen, A. Hagen, Y. L. Liu, Effect of cathode gas humidification on performance and durability of solid oxide fuel cells, Solid State Ion 181 (2010) 517-524 (https://doi.org/10.1016/j.ssi.2010.02.018).
[36] F. Che, J. T. Gray, S. Ha, J. S. McEwen, Improving Ni catalysts using electric fields: A DFT and experimental study of the methane steam reforming reaction, ACS Catal. 7 (2017) 551-562
(https://doi.org/10.1021/acscatal.6b02318).
[37] J. Xu, C. M. Y. Yeung, J. Ni, F. Meunier, N. Acerbi, M. Fowles, S. C. Tsang, Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts, APPL CATAL A-GEN 345 (2008) 119-127 (https://doi.org/10.1016/j.apcata.2008.02.044).
[38] J. Hanna, W. Y. Lee, Y. Shi, A. F. Ghoniem, Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels, Prog. Energy Combust. Sci. 40 (2014) 74-111
(https://doi.org/10.1016/j.pecs.2013.10.001).
[39] U. M. Damo, M. L. Ferrari, A. Turan, A. F. Massardo, Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy, Energy 168 (2019) 235-246
(https://doi.org/10.1016/j.energy.2018.11.091).
[40] T. M. Gür, Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas, Prog. Energy Combust. Sci. 54 (2016) 1-64
(https://doi.org/10.1016/j.pecs.2015.10.004).
[41] Y. Lin, Z. Zhan, J. Liu, S. A. Barnett, Direct operation of solid oxide fuel cells with methane fuel, Solid State Ion. 176 (2005) 1827-1835
(https://doi.org/10.1016/j.ssi.2005.05.008).
[42] J. Liu, S. A. Barnett, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ion. 158 (2003) 11-16
(https://doi.org/10.1016/S0167-2738(02)00769-5).
[43] D. Saebea, S. Authayanun, Y. Patcharavorachot, Performance analysis of direct steam reforming of methane in SOFC with SDC-based electrolyte, Energy Rep. 6 (2020) 391-396 (https://doi.org/10.1016/j.egyr.2019.08.078).
[44] A. Ideris, E. Croiset, M. Pritzker, A. Amin, Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell, Int. J. Hydrog. Energy 42 (2017) 23118-23129 (https://doi.org/10.1016/j.ijhydene.2017.07.117).
[45] J. Ni, J. Zhao, L. Chen, J. Lin, S. Kawi, Lewis acid sites stabilized nickel catalysts for dry (CO2) reforming of methane, ChemCatChem 8 (2016) 3732-3739 (https://doi.org/10.1002/cctc.201601002).
[46] H. Zhang, W. Liu, Y. Wang, J. Wang, J. Yang, T. Liang, C. Yin, B. Chi, L. Jia, W. Guan, Performance and long-term durability of direct-methane flat-tube solid oxide fuel cells with symmetric double-sided cathodes, Int. J. Hydrog. Energy 44 (2019) 28947-28957
(https://doi.org/10.1016/j.ijhydene.2019.09.126).
[47] L. Fan, L. V. Biert, A. T. Thattai, A. H. M. Verkooijen, P. V. Aravind, Study of methane steam reforming kinetics in operating solid oxide fuel cells: Influence of current density, Int. J. Hydrog. Energy 40 (2015) 5150-5159 (https://doi.org/10.1016/j.ijhydene.2015.02.096).
[48] E. P. Murray, T. Tsai, S. A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651 (https://doi.org/10.1038/23220).
[49] W. Liu, J. Sang, Y. Wang, X. Chang, L. Lu, J. Wang, X. Zhou, Q. Zhai, W. Guan, S. C. Singhal, Durability of direct-internally reformed simulated coke oven gas in an anode-supported planar solid oxide fuel cell based on double-sided cathodes, J. Power Sources 31 (2020) 228284
(https://doi.org/10.1016/j.jpowsour.2020.228284).
[50] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao, Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes, J. Power Sources 240 (2013) 232-240
(https://doi.org/10.1016/j.jpowsour.2013.04.014).
[51] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, J. Power Sources 268 (2014) 508-516 (https://doi.org/10.1016/j.jpowsour.2014.06.082).
[52] J. W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources 162 (2006) 30-40 (https://doi.org/10.1016/j.jpowsour.2006.06.062).
[53] A. J. Jacobson, Materials for solid oxide fuel cells, Chem. Mater. 22 (2010) 660-674 (https://doi.org/10.1021/cm902640j).
[54] M. S. Khan, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review, Ceram. Int. 42 (2016) 35-48
(https://doi.org/10.1016/j.ceramint.2015.09.006).
[55] B. S. Prakash, S. S. Kumar, S. T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sust. Energ. Rev. 36 (2014) 149-179 (https://doi.org/10.1016/j.rser.2014.04.043).
[56] S. McIntosh, R. J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104 (2004) 4845-4866 (https://doi.org/10.1021/cr020725g).
[57] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrog. Energy 46 (2021) 27643-27674 (https://doi.org/10.1016/j.ijhydene.2021.06.020).
[58] H. Zhu, R. J. Kee, A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies, J. Power Sources 117 (2003) 61-74 (https://doi.org/10.1016/S0378-7753(03)00358-6).
[59] Q. A. Huang, R. Hui, B. Wang, J. Zhang, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochim. Acta 52 (2007) 8144-8164 (https://doi.org/10.1016/j.electacta.2007.05.071).
[60] B. A. Braz, C. S. Moreira, V. B. Oliveira, A. M. F. R. Pinto, Electrochemical impedance spectroscopy as a diagnostic tool for passive direct methanol fuel cells, Energy Rep. 8 (2022) 7964-7975
(https://doi.org/10.1016/j.egyr.2022.06.045).
|