博碩士論文 110323007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.45.223
姓名 黃柏憲(Bo-Xian Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 固態氧化物燃料電池硬銲接合件熱循環–潛變交互作用研究
(Interaction of Thermal Cycling and Creep in Braze Sealing Joint for Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ Mg3MnNi2對Mg2Ni合金電化學與吸放氫特性之影響
★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究
★ AISI 347不銹鋼腐蝕疲勞行為★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要探討金屬支撐型固態氧化物燃料系統中硬銲封裝填料與金屬連接板之接合件,其熱循環—潛變交互作用之耐久壽命及破壞模式。所使用之金屬連接板型號為Crofer 22 H的商用肥粒鐵系不銹鋼,封裝填料為核能研究所所開發的銀基合金。將接合件於室溫與高溫750 °C空氣中進行溫度循環作用,同時對接合件施予相對應的張力或剪力負載來進行熱循環—潛變實驗,並評估氧化環境熱時效處理對接合件熱循環—潛變性質的影響,亦透過破斷面觀察以及元素分析,瞭解接合件之破裂模式。
實驗結果顯示,未時效接合件及經1000小時熱時效處理後,兩者於室溫與高溫循環環境下受張力及剪力作用,所能承受的熱循環數皆隨著施加負載減少而增加。未時效張力與剪力接合件在累積高溫負載1000小時壽命之100次熱循環的對應負載強度分別為4.98 MPa 與 3.54 MPa,相較於具1000小時斷裂壽命之純潛變強度,分別下降了9.1%與0.6%。時效處理張力與剪力接合件具100次熱循環壽命的對應負載強度分別為3.86 MPa 與3.11 MPa,相較於具1000小時斷裂壽命之純潛變強度,分別下降了19.6%與14.6%。由此可知熱循環—潛變交互作用,相較於純潛變機制,對未時效及時效接合件都會造成額外的損傷,降低累積的高溫斷裂壽命。
接合件破斷面分析結果顯示,未時效張力及剪力接合件,在較短循環數下,破斷面發生於氧化鉻層及銀銲料層之間,而中、長循環數下,破斷面介於鉻酸銀層及銀銲料層之間。時效處理張力及剪力接合件在所有循環數下,破斷面皆會發生於鉻酸銀層及銀銲料層之介面,部份發生在氧化鉻層及鉻酸銀層之介面。
摘要(英) The aim of this study was to investigate the thermal cycling-creep properties and fracture pattern of the joint between metallic interconnect and braze sealant in metal-supported solid oxide fuel cell system. The materials used were a Ag-Ge sealant developed at the Institute of Nuclear Energy Research and a commercial Crofer 22 H ferritic steel. The thermal cycling-creep test was conducted by applying a constant load (shear or tensile mode) on the joint under thermal cycling between room temperature and 750 °C in air. Effects of thermal aging were also considered. Fracture surfaces were analyzed using scanning electron microscopy to investigate the fracture patterns.
Experimental results showed that the number of cycles to rupture of both unaged and aged joints was increased with a decrease in the applied constant shear and tensile loading at 750 °C. The tensile and shear strength of unaged joint at 100 thermal cycles, equivalent to accumulated time of 1000 h at 750 °C, was 4.98 MPa and 3.54 MPa, respectively. In comparison with creep strength of unaged joint at 1000 h, it was reduced by 9.1% and 0.6%, respectively. The tensile and shear strength of aged joint at 100 thermal cycles was 3.86 MPa and 3.11 MPa, respectively. In comparison with creep strength of aged joint at 1000 h, it was reduced by 19.6% and 14.6%, respectively. Apparently, the combination of thermal cycling and creep would generate more damage than pure creep, leading to a shorter rupture time.
For unaged tensile and shear joints, fracture mainly occurred at the interface between Cr2O3 and braze with a short thermal cycling life. For a longer accumulated time at high temperature, more and more AgCrO2 formed at the joints with a medium or long thermal cycling life. Fracture sites gradually transformed to the interface between AgCrO2 and braze. For aged tensile and shear joints, fracture mainly occurred at the interface between AgCrO2 and braze. In addition, the longer thermal cycling life the aged joints sustained, the more remarkable this phenomenon was. On the other hand, for the aged joints with a shorter thermal cycling life, more fracture occurred at the interface between Cr2O3 and AgCrO2.
關鍵字(中) ★ 熱循環–潛變交互作用
★ 固態氧化物燃料電池
關鍵字(英) ★ thermal cycling-creep
★ sofc
論文目次 摘要 II
致謝 V
表目錄 VIII
圖目錄 IX
第一章、前言 1
1.1. 固態氧化物燃料電池 1
1.2. SOFC封裝接合 5
1.3. 硬銲填料與金屬連接板的接合 6
1.4. 熱循環與潛變作用 8
1.5. 研究目的 12
第二章、材料與實驗步驟 14
2.1. 材料與試片 14
2.2. 熱循環–潛變交互作用機械試驗 18
2.3. 破斷面分析 19
第三章、結果與討論 21
3.1. 熱循環對未時效處理接合件接合強度之影響 21
3.1.1. 熱循環壽命 21
3.1.2. 破斷面分析 23
3.2. 熱循環對時效處理接合件接合強度之影響 39
3.2.1 熱循環壽命 39
3.2.2 破斷面分析 41
3.3. 熱循環對潛變性質的影響 53
3.3.1. 未時效試片熱循環–潛變交互作用與純潛變比較 53
3.3.2. 時效試片熱循環–潛變交互作用與純潛變比較 59
第四章、結論 67
未來研究方向 68
參考文獻 69
參考文獻 1. W.-Y. Chiang, Optimal Analysis of Syngas Fed Solid Oxide Fuel Cell in Megawatt Systems, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2021.
2. 弗朗諾·巴爾伯, PEM燃料電池:理論與實踐, 機械工業出版社, 中國, 2016.
3. A. B. Stambouli and E. Traversa, “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy,” Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455, 2002.
4. S. C. Singhal, “Advances in Solid Oxide Fuel Cell Technology,” Solid State Ionics, Vol. 135, pp. 305-313, 2000.
5. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, 2016.
6. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, Solid State Ionics, Vol, 148, pp. 513-519, 2002.
7. J. M. Ralph, A. C. Schoeler, and M. Krumpelt “Materials for Low- Temperature Solid Oxide Fuel Cells, ” Journal of Materials Science, Vol. 36, pp. 1161-1172, 2001.
8. D. Ghosh, G. Wang, R. Brule, E. Tang, and P. Huang, “Performance of Anode Supported Planar SOFC Cells,” The Electrochemical Society, Vol. 19, pp. 822-829, 1999.
9. I. Villarreal, C. Jacobson, A. Leming, Y. Matus, S. Visco, and L. De Jongheb, “Metal-Supported Solid Oxide Fuel Cells,” Electrochemical and Solid-State Letters, Vol. 6, pp. 178-179, 2003.
10. D. Udomsilp, J. Rechberger, R. Neubauer, C. Bischof, F. Thaler, W. Schafbauer, N. H. Menzler, G. J. de Haart, A. Nenning, A. K. Opitz, O. Guillon, and M. Brams, “Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender System,” Cell Reports Physical Science, Vol. 1, 100072, 2020.
11. H. Yakabe, M. Hishinuma, and M. Uratani, “Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 86 pp. 423-431, 2000.
12. M. Tang, W. Chen, and L. Yan” Analysis of The Brazing Joints of Tubular Zirconia Ceramics and 06Cr19Ni10 Stainless Steel Tubes,” Advances in Applied Ceramics, Vol. 120, pp. 10-16, 2021.
13. S. Bremm, S. Dölling, W. Becker, L. Blum, Ro. Peters, J. Malzbender, and D. Stolten, “A Methodological Contribution to Failure Prediction of Glass Ceramics Sealings in High-Temperature Solid Oxide Fuel Cell Stacks,” Journal of Power Sources, Vol. 507, 230301, 2021.
14. H. Bian, Y. Song, D. Liu, Y. Lei, X. Song, and J. Cao, “Joining of SiO2 Ceramic and TC4 Alloy by Nanoparticles Modified Brazing Filler Metal,” Journal of Aeronautics, Vol. 33, pp. 383-390, 2020.
15. Z. Wang, C. Li, X. Si, B. Yang, Y. Huang, J. Qi, J. Feng, and J. Cao, “Brazing YSZ Ceramics by a Novel SiO2 Nanoparticles Modified Ag Filler,” Ceramics International, Vol. 46, pp. 16493-16501, 2020.
16. K. S. Weil, C. A. Coyle, J. T. Darsell, G. G. Xia, and J S. Hardy, “Effects of Thermal Cycling and Thermal Aging on The Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals,” Journal of Power Sources, Vol. 152, pp. 97-104, 2005.
17. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
18. K. S. Weil and B. J. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.
19. W.-C. Jiang, Y.-C. Zhang, W. Woo, and S. T. Tu, “Three-Dimensional Simulation to Study the Influence of Foil Thickness on Residual Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 209, pp. 65-71, 2012.
20. S. Baek, J. Jeong, J. H. Kim, C. Lee, and J. Bae, “Interconnect-Integrated Solid Oxide Fuel Cell with High Temperature Sinter-Joining Process,” International Journal of Hydrogen Energy, Vol. 35, pp. 11878-11889, 2010.
21. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465–3476, 2007.
22. D. A. Krainova, S. T. Zharkinova, N. S. Saetova, A. A. Raskovalov, A. V. Kuz’min, V. A. Eremin, E. A. Sherstobitova, S. V. Pershina, M. V. Dyadenko, X. Zhang, and S. Jiang, “Influence of Cerium Oxide on Properties of Glass-Ceramic Sealants for Solid Oxide Fuel Cells,” Russian Journal of Applied Chemistry, Vol. 90, pp. 1278-1284, 2017.
23. F. Smeacetto, M. Salvo, M. Santarelli, P. Leone, G.A. Ortigoza-Villalba, A. Lanzini, L.C. Ajitdoss, and M. Ferraris, “Performance of a Glass-Ceramic Sealant in an SOFC Short Stack,” International Journal of Hydrogen Energy, Vol. 38, pp. 588-596, 2013.
24. S.-F. Wang, Y.-F. Hsu, C.-S. Cheng, and Y.-C. Hsieh, “SiO2-Al2O3-Y2O3-ZnO Glass Sealants for Intermediate Temperature Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 38, pp. 14779-14790, 2013.
25. L. Peng, Q.-S. Zhu, Z.-H. Xie, and P. Wang, “Interface Reactions Between Sealing Glass and Metal Interconnect under Static and Dynamic Heat Treatment Conditions,” Journal of Electrochemical Energy Conversation and Storage, Vol. 12, 061009, 2015.
26. N. Punbusayakul, K. Boonsiri, S. Charojrochkul, B. Fungtammasan, and J. Charoensuk, “Assessment on Hermetic Property and Mechanical Compatibility of Various Groove-Gasket Sealing Designs for Solid Oxide Fuel Cell Stack” Journal of power sources, Vol. 213, pp. 186-202, 2012.
27. M. C. Tucker, C. P. Jacobson, L.C. De Jonghe, and S. J. Visco “A Braze System for Sealing Metal-Spupported Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 106, pp. 1049-1057, 2006.
28. Q. Zhou, T. R. Bieler, and J. D. Nicholas, “Transient Porous Nickel Interlayers for Improved Silver-Based Solid Oxide Fuel Cell Brazes” Acta Materialia, Vol. 148, pp. 156-162, 2018.
29. K. Lin, M. Singh, R. Asthana, and C. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag–Cu–Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063–2071, (2014).
30. T. Bause, J. Malzbender, M. Pausch, T. Beck, and L. Singheiser, “Damage and Failure of Silver Based Ceramic/Metal Joints for SOFC Stacks,” Fuel Cells, Vol. 13, pp. 578-583, 2013.
31. B. Kuhn, E. Wessel, J. Malzbender, R.W. Steinbrech, and L. Singheiser, “Effect of Isothermal Aging on the Mechanical Performance of Brazed Ceramic/Metal Joints for Planar SOFC-Stacks,” International Journal of Hydrogen Energy, Vol. 35, pp. 9158-9165, 2010.
32. B. Kuhn, F. J. Wetzel, J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Mechanical Performance of Reactive-Air-Brazed (RAB) Ceramic/Metal Joints for Solid Oxide Fuel Cells at Ambient Temperature” Journal of Power Sources, Vol. 193, pp. 199-202, 2009.
33. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, and J. Hjelm, “An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
34. C.-L. Chao, C.-L. Chu, Y.-K. Fuh, R.-Q. Hsu, S. Lee, and Y.-N. Cheng, “Interfacial Characterization of Nickel–Yttria-Stabilized Zirconia Cermet Anode/Interconnect Joints with Ag–Pd–Ga Active Filler for Use in Solid-Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 40, pp. 1523-1533, 2015.
35. J. T. Darsell and K. S. Weil “High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals,” International Journal of Hydrogen Energy, Vol. 36, pp. 4519-4524, 2011.
36. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, and K. Sun, “Effective Ag–CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
37. S. Lee, K.-H. Kang, H. S. Hong, Y. Yun, and J.-H. Ahn, “Interfacial Morphologies Between NiO–YSZ Fuel Electrode/316 Stainless Steel as the Interconnect Material and B–Ni3 Brazing Alloy in a Solid Oxide Fuel Cell System,” Journal of Alloys and Compounds, Vol. 488, pp. L1-L5, 2009.
38. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, vol. 164, pp. 238–251, 2007.
39. C.-K. Lin, T.-T. Chen, A.-S. Chen, Y.-P. Chyou, and L.-K. Chiang, “Finite Element Analysis of Thermal Stress Distribution in Planar SOFC,” ECS Transactions, Vol. 7, pp. 1977–1986, 2007.
40. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources Vol. 192, pp. 515-524, 2009.
41. T. Venkateswaran, V. Xavier, D. Sivakumar, B. Pant, and G.D. J. Ram, “Brazing of Stainless Steels Using Cu-Ag-Mn-Zn Braze Filler: Studies on Wettability, Mechanical Properties, and Microstructural Aspects,” Materials & Design, Vol. 121, pp. 213-225, 2017.
42. J. Y. Kim, J. S. Hardy, and S. Weil, “Dual-Atmosphere Tolerance of Ag-CuO-Based Air Braze,” International Journal of Hydrogen Energy, Vol. 32, pp. 3655-3663, 2007.
43. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag-CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
44. K.-L. Lin, M. Singh, R. Asthana, and C.-H. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag-Cu-Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063-2071, 2014.
45. J. Y. Kim, J. S. Hardy, and K. S Weil, “Ag–Al Based Air Braze for High Temperature Electrochemical Devices,” International Journal of Hydrogen Energy, Vol. 33, pp. 3754-3762, 2007.
46. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, K. Norrman, C. Chatzichristodoulou, and P. Hendriksen, “An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
47. X. Si, J. Cao, B. Talic, I. Ritucci, C. Li, J. Qi, J. Feng, and R. Kiebach, “A Novel Ag Based Sealant for Solid Oxide Cells with a Fully Tunable Thermal Expansion,” Journal of Alloys and Compounds, Vol. 831, 154608, 2020.
48. C.-K. Lin, K.-Y. Chen, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Mechanical Durability of Solid Oxide Fuel Cell Glass-ceramic Sealant/Steel Interconnect Joint under Thermo-mechanical Cycling,” Renewable Energy, Vol. 138, pp. 1205-1213, 2019.
49. A. Atkinson and B. Sun, “Residual Stress and Thermal Cycling of Planar Solid Oxide Fuel Cells,” Materials Science and Technology, Vol. 23, pp. 1135-1143, 2007.
50. F. Smeacetto, A. Chrysanthou, M. Salvo, T. Moskalewicz, F. D. Bytner, L. C. Ajitdoss, and M. Ferraris, “Thermal Cycling and Ageing of a Glass-ceramic Sealant for Planar SOFCs,” International Journal of Hydrogen Energy, Vol. 36, pp. 11895-11903, 2011.
51. F. Smeacetto, A. Chrysanthou, T. Moskalewicz, and M. Salvo, “Thermal Cycling of Crofer22APU-sealant-anode Supported Electrolyte Joined Structures for Planar SOFCs up to 3000h,” Materials Letters, Vol. 111, pp. 143-146, 2013.
52. N. E. Dowling, S. L. Kampe, and M. V. Kral, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2020.
53. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Cheng, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
54. S. J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, and K. J. Yoon, “Acceleration Tests: Degradation of Anode-Supported Planar Solid Oxide Fuel Cells at Elevated Operating Temperatures,” Journal of Power Sources, Vol. 360, pp. 284-293, 2017.
55. Y.-S. Chou, J. W. Stevenson, and J.-P. Choi, “Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part II: Sealing Glass Stability, Microstructure and Interfacial Reactions,’’ Journal of Power Sources, Vol. 250, pp. 166-173, 2014.
56. D. Ciria, M. Jiménez-Melendo, V. Aubin, and G. Dezanneau, “Creep Properties of High Dense La9.33Si6O26 Electrolyte for SOFCs,’’ Journal of the European Ceramic Society, Vol. 40, pp. 1989-1998, 2020.
57. J. Wei and J. Malzbender, “Steady State Creep of Ni-8YSZ Substrates for Application in Solid Oxide Fuel and Electrolysis Cells,” Journal of Power Sources, Vol. 360, pp. 1-10, 2017.
58. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. Van herlea, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,’’ Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
59. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass-Ceramic Sealant with Metallic Interconnect,’’ Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
60. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
61. C.-K. Lin, T.-W. Lin, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Creep Rupture of the Joint Between a Glass-Ceramic Sealant and Lanthanum Strontium Manganite-Coated Ferritic Stainless Steel Interconnect for Solid Oxide Fuel Cells,’’ Journal of the European Ceramic Society, Vol. 38, pp. 2417-2429, 2018.
62. Y. Wang, W. Jiang, M. Song, Y. Zhang, and S.-T. Tu, “Effect of Frame Material on the Creep of Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 44, pp. 20323-20335, 2019.
63. H.-L. Hsu, Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell, M.S. Thesis, Tao-Yuan, National Central University, 2015.
64. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
65. Y.-C. Zhang, X.-T. Yu, W. Jiang, S.-T. Tu, X.-C. Zhang, and Y.-J. Ye, “Creep Fracture Behavior of the Crofer 22 APU for the Interconnect of Solid Oxide Fuel Cell Under Different Temperatures,’’ International Journal of Hydrogen Energy, Vol. 45, pp. 4829-4840, 2020
66. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
67. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,” Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
68. Y.-W. Tseng, Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2020.
69. W.-T. Hung, Creep Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2021.
70. Z.-F. Shen, Thermo-Mechanical Fatigue Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2022.
71. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
72. L.-W. Huang, C.-K. Liu, Y.-N. Cheng, and R.-Y. Lee, Brazing Material Composition and Manufacturing Method Thereof, ROC Patent No. I634220, 2018.
73. https://cdn.standards.iteh.ai/samples/702/7fdf248fa8414d5ebf6ef38068f63646/IEC-60068-2-14-2009.pdf (accessed on June 17, 2023).
74. https://zhuanlan.zhihu.com/p/625322737 (accessed on June 5, 2023).
75. R. C. Hibbeler, Statics and Mechanics of Materials , 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2019.
76. A. Kaletsch, A. Bezold, E. M. Pfaff, and C. Broeckmann, “Effects of Copper Oxide Content in AgCuO Braze Alloy on Microstructure and Mechanical Properties of Reactive-Air-Brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),” Journal of Ceramic Science and Technology, Vol. 3, pp. 95-104, 2012.
77. https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_H.pdf. (accessed on June 5, 2023).
78. S. Suresh, Fatigue of Materials, Cambridge University Press, UK, 1991.
79. T. Vojtek, P. Pokorný, I. Kuběna, L. Náhlík, R. Fajkoš and P. Huta “Quantitative Dependence of Oxide-Induced Crack Closure on Air Humidity for Railway Axle Steel,” International Journal of Fatigue, Vol. 123, pp. 213-224, 2019.
80. J. A. De Souza, S. Goutianos, M. Skovgaard, and B. F. Sørensen, “Fracture Resistance Curves and Toughening Mechanisms in Polymer Based Dental Composites,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 558-571, 2011.
81. V. Tvergaard, “On Fatigue Crack Growth in Ductile Materials by Crack-Tip Blunting,” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 2149-2166, 2004.
82. D. J. Nicholls, “The Relation Between Crack Blunting and Fatigue Crack Growth Rates,” International Journal of Fatigue, Vol. 17, pp. 449, 1995.
83. V. P. Rajan and W. A. Curtin, “Crack Tip Blunting and Cleavage Under Dynamic Conditions,” Journal of the Mechanics and Physics of Solids, Vol. 90, pp. 18-28, 2016.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明