博碩士論文 110328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.117.254.202
姓名 吳昊軒(Hao-Hsuan Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 低溫熱管設計及性能研究
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 通訊衛星低溫熱管性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 薄矽膠層吸附床之性能研究
★ 小型吸附式空調系統研究★ 變頻空調機在不同環境下之控制策略
★ 水-空氣在板式熱交換器內的流動觀察★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能
★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究★ 梯形流道表面之池沸騰熱傳性能研究
★ 石墨烯塗佈銅管外凝結熱傳性能研究★ 超臨界R-410A與R-32熱傳及壓降性能之研究
★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管★ 不同性能風扇對熱傳增強鰭片之性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著通信衛星和冷鏈運輸應用的逐漸普及,低溫熱管的重要性日益凸顯。大多數這些應用的溫度範圍為 -20 ~ -40 oC。然而,在此溫度範圍內進行的研究卻很少。這項研究提供了在接近 -40 oC 的溫度下運行的熱管傳熱性能的實驗測量。採用外徑8mm、10mm、12mm三種不同的燒結銅熱管,工作流體使用冷媒R-32、R-134a以及R-245fa進行測試。
根據實驗結果,冷媒R-32的熱傳性能最佳,其次是冷媒R-134a,而冷媒R-245fa表現最差。可能的原因是,與冷媒R-134a和冷媒R-245fa相比,冷媒R-32具有最好的性質,如飽和蒸汽壓差、液體熱傳導係數和液體傳輸係數。
在冷媒R-245fa及R-134a熱管,管徑12mm熱管的整體熱阻低於管徑10mm熱管,是因為在較大的管徑中,蒸發段和冷凝段的液汽介面熱傳面積上升,液汽介面蒸發冷凝熱阻下降,整體熱管熱阻下降。而在冷媒R-32熱管,因為管徑12mm熱管的蕊材厚度厚於管徑10mm熱管,造成熱管的流體-蕊材結合熱阻上升,熱管蕊材厚度對熱阻的影響較多,使得在不同管徑中冷媒R-32熱管的熱阻表現上,管徑10mm熱管熱阻是低於管徑12mm熱管。
摘要(英) Due to the gradually popularized of the communication satellite and cold chain transportation applications, low-temperature heat pipes are increasing it importance drastically in the past years. Most of those applications are in the temperature range of -20 to -40 oC. However, very few researches have been conducted within this temperature range. This study provided an experimental measurement of heat transfer performance of heat pipes operating at temperatures near -40 oC. Using three different sintered copper heat pipes with outside diameters of 8mm, 10mm, and 12 mm and using refrigerant R-32, R-134a, and R-245fa as working fluid were tested.
Based on the experimental results, the thermal resistance of refrigerant R-32 is best, followed by refrigerant R-134a, while refrigerant R-245fa performs the worst. The possible reason is that refrigerant R-32 has best property of saturated vapor pressure gradient, liquid thermal conductivity, and liquid transport parameter compared to refrigerant R-134a and refrigerant R-245fa.
The overall thermal resistance of the diameter of 12mm heat pipe is lower than that of the diameter of 10mm heat pipe in both refrigerant R-245fa and R-134a heat pipes. The reason is the larger diameter heat pipe, the heat transfer area of the liquid-vapor interface in the evaporating and condensing sections increases, leading to a decrease in the liquid-vapor interface thermal resistance and thus reducing the overall thermal resistance of the heat pipe. However, in the R-32 refrigerant heat pipe, the diameter of 12mm heat pipe has a thicker wick than the diameter of 10mm heat pipe. This results in an increase in the thermal resistance with the fluid-wick interface. The thickness of the wick has a more significant impact on the thermal resistance, causing the diameter of 10mm heat pipe has lower thermal resistance than the diameter of 12mm heat pipe in refrigerant R-32 heat pipes.
關鍵字(中) ★ 熱管
★ 冷媒
★ 熱阻
★ 通訊衛星
★ 冷鏈運輸
關鍵字(英) ★ Heat pipes
★ Refrigerants
★ Thermal Resistance
★ Communication satellites
★ Cold chain transportation
論文目次 摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xi
第一章、前言 1
1.1 研究背景與動機 1
1.2 研究目的 5
第二章、文獻回顧 6
2.1 低溫熱管設計參數與操作參數 6
2.1.1 工作流體的選擇 6
2.1.2 蕊材的影響 10
2.1.3 工作流體填充率 14
2.2 低溫熱管性能研究 18
2.3 總結 22
第三章、研究方法 24
3.1 工作流體挑選 24
3.2 測試段 26
3.3 實驗系統 36
3.3.1 冷凍系統 36
3.3.2 實驗量測儀器與設備 37
3.3.2.1 溫度量測 37
3.3.2.2 直流電源供應器 38
3.3.2.3 電壓電流量測 38
3.3.3 資料擷取系統 38
3.4 實驗步驟 40
3.4.1 熱管工作流體的填充 40
3.4.2 熱管性能測試 40
3.5 實驗數據換算 42
第四章、結果與討論 43
4.1、工作流體冷媒R-245fa 43
4.1.1 管徑8mm熱管性能結果 43
4.1.2 管徑10mm熱管性能結果 46
4.1.3 管徑12mm熱管性能結果 48
4.1.4 不同熱管管徑性能結果比較 50
4.2、工作流體冷媒R-134a 52
4.2.1 管徑8mm熱管性能結果 52
4.2.2 管徑10mm熱管性能結果 54
4.2.3 管徑12mm熱管性能結果 56
4.2.4 不同熱管管徑性能結果比較 58
4.3、工作流體冷媒R-32 60
4.3.1 管徑8mm熱管性能結果 60
4.3.2 管徑10mm熱管性能結果 62
4.3.3 管徑12mm熱管性能結果 64
4.3.4 不同熱管管徑性能結果比較 66
4.4、不同冷媒性能結果比較 68
第五章、結論 73
參考文獻 74
附錄 77
參考文獻 [1] Source:https://www.bnext.com.tw/article/71771/leo-compatible--5g-components0920
[2] Source: https://h5.qingdan.com/post/257373
[3] A. Faghri, “Heat pipe science and technology.” Global Digital Press, 1995.
[4] G. Peterson and G. Compagna, “Cryogenic heat pipes in spacecraft applications.” 4th Thermophysics and Heat Transfer Conference, 1986.
[5] 王啟川, “熱交換設計 Heat Transfer Design.” 五南圖書出版股份有限公司, 2007.
[6] 林唯耕, “電子構裝散熱理論與量測實驗之設計.” 國立清華大學出版社, 2017.
[7] W.S. Chi, “Heat Pipe Theory And practice: A Source book.” McGraw-Hill, New York, 1976.
[8] A.R. Anand, “Effect of various parameters on heat transport capability of axially grooved heat pipes.” Thermal Science and Engineering Progress 24 100890, 2021.
[9] K.R. Schlitt and J.P. Kirkpatrick, “Parametric performance of extruded axial grooved heat pipes from 100 to 300 K.” Thermophysics and Heat Transfer Conference, 1974.
[10] J. Hauser, A. Hauser, and B.G.M. Aalders, “Design and qualification of methane-filled heat pipes for the SCIAMACHY radiant cooler.” Sixth European Symposium on Space Environmental Control Systems. Vol. 400, 1997.
[11] I. Sauciuc, M. Mochizuki, K. Mashiko, Y. Saito, and T. Nguyen, “The Design and Testing of the Super Fiber Heat Pipes for Electron-ics Cooling Applications.” Sixteenth IEEE SEMI-THERM Symposium, pp. 27-32, 2000.
[12] C.K. Loh, E. Harris, and D.J. Chou, “Comparative study of heat pipes performances in different orientations.” Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.. IEEE, 2005.
[13] C. Li, and G.P. Peterson, “Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces” ASME J. Heat Transfer, Vol. 129, pp. 1465-1475, 2007.
[14] J.T. Cieslinski, “Nucleate pool boiling in porous metallic coatings,” Experimental Thermal and Fluid Science Vol. 25 pp. 557-564, 2002.
[15] 蔡昇翰, “不同參數對燒結式熱管性能之影響研究.” 國立中央大學機械工程研究所碩士論文, 2015.
[16] A.R. Anand, “Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe.” International Journal of Thermal Sciences 139 269-281, 2019.
[17] R. Wanison, N. Kimura, and M. Murakami, “A study of the thermal behavior of a nitrogen heat pipe for a wide range of heat loads at several filling ratios.” IOP Conference Series: Materials Science and Engineering. Vol. 502. No. 1. IOP Publishing, 2019.
[18] J. Jones, “Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope′s Wide Field Planetary Camera.” 18th Thermophysics Conference, 1983.
[19] A. Hamilton and J. Hu, “An electronic cryoprobe for cryosurgery using heat pipes and thermoelectric coolers: a preliminary report.” Journal of medical engineering & technology 17.3 104-109, 1993.
[20] A.R. Anand, A.J. Vedamurthy, S.R. Chikkala, S. Kumar, D. Kumar, and P.P. Gupta, “Analytical and experimental investigations on axially grooved aluminum-ethane heat pipe.” Heat transfer engineering 29.4 410-416, 2008.
[21] Z. Lataoui, C. Romestant, Y. Bertin, A. Jemni, and D. Petit, “Inverse thermal analysis of the drying zone of the evaporator of an axially grooved heat pipe.” Experimental thermal and fluid science 34.5 562-574, 2010.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2023-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明