摘要(英) |
This study investigates the Brazil Nut Effect (BNE) in a quasi-two-dimensional vertical vibrated bed by changing different fluid, vibration frequency, and water height to different density ratios of intruders under the same dimensionless vibration intensity through experiments. Take pictures with a high-speed camera and use PTV (Particle Tracking Velocimetry) to analyze the movement of particles, the rise time and velocity of the intruder, the horizontal velocity of the granular bed, and the drag force on the intruder.
When the fluid is water, the water to the particles must be taken into account. For the smaller background particles, the water dominates the size separation process, and the water drag force will make the rise time of the intruder depend on the density ratio. When the density ratio approaches the packing fraction of the small particle, the intruder needs more time to rise. In the case of changing the water height, the lower the water height, the slower the intruder rises, because the water surface close to the granular bed, which affect the upward movement of the intruder. The higher the water height, the faster the intruder rises, increasing the water height will increase the pressure difference of the granular bed, thereby increasing the velocity of the water flowing downward, making the water drag the background particles laterally faster to fill the gap under the intruder, and eventually enhance the BNE. When the water height is low, the smaller the frequency, the more severe the disturbance imposed by the water surface fluctuation on the granular bed, and the intruder with lower mass is easily affected, the stronger the input energy, the slower the rise time of the intruder. When the water height is high, the stronger the input energy can increase the net upward displacement of the intruder, thereby enhancing the water-driven BNE and reducing the rise time of the intruder. |
參考文獻 |
[1] J. J. McCarthy, "Turning the corner in segregation". Powder Technology, Vol. 192(2): pp. 137-142, 2009.
[2] M. Alonso, M. Satoh, and K. Miyanami, "OPTIMUM COMBINATION OF SIZE RATIO, DENSITY RATIO AND CONCENTRATION TO MINIMIZE FREE-SURFACE SEGREGATION". Powder Technology, Vol. 68(2): pp. 145-152, 1991.
[3] J. Gray, "Particle Segregation in Dense Granular Flows", in Annual Review of Fluid Mechanics, Vol 50, Davis S.H. and Moin P., Editors. pp. 407-433, 2018.
[4] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, "Why the Brazil nuts are on top: Size segregation of particulate matter by shaking". Physical Review Letters, Vol. 58(10): pp. 1038-1040, 1987.
[5] S. Matsumura, D. C. Richardson, P. Michel, S. R. Schwartz, and R. L. Ballouz, "The Brazil nut effect and its application to asteroids". Monthly Notices of the Royal Astronomical Society, Vol. 443(4): pp. 3368-3380, 2014.
[6] V. Perera, A. P. Jackson, E. Asphaug, and R. L. Ballouz, "The spherical Brazil Nut Effect and its significance to asteroids". Icarus, Vol. 278: pp. 194-203, 2016.
[7] B. Ferdowsi, C. P. Ortiz, M. Houssais, and D. J. Jerolmack, "River-bed armouring as a granular segregation phenomenon". Nature Communications, Vol. 8: 1363, 2017.
[8] A. Srivastava, K. Kikuchi, and T. Ishikawa, "Microbial Brazil nut effect". Soft Matter, Vol. 17(46): pp. 10428-10436, 2021.
[9] T. Shinbrot and F. J. Muzzio, "Reverse buoyancy in shaken granular beds". Physical Review Letters, Vol. 81(20): pp. 4365-4368, 1998.
[10] H. M. Jaeger and S. R. Nagel, "PHYSICS OF THE GRANULAR STATE". Science, Vol. 255(5051): pp. 1523-1531, 1992.
[11] M. Faraday, "On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces". Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, Vol. 3(0): pp. 49-51, 1837.
[12] S. S. Hsiau and C. H. Chen, "Granular convection cells in a vertical shaker". Powder Technology, Vol. 111(3): pp. 210-217, 2000.
[13] F. W. Zhang, L. Wang, C. P. Liu, P. Wu, and S. Zhan, "Patterns of convective flow in a vertically vibrated granular bed". Physics Letters A, Vol. 378(18-19): pp. 1303-1308, 2014.
[14] C. R. Wassgren, C. E. Brennen, and M. L. Hunt, "Vertical vibration of a deep bed of granular material in a container". Journal of Applied Mechanics-Transactions of the Asme, Vol. 63(3): pp. 712-719, 1996.
[15] S. S. Hsiau, M. H. Wu, and C. H. Chen, "Arching phenomena in a vibrated granular bed". Powder Technology, Vol. 99(2): pp. 185-193, 1998.
[16] S. S. Hsiau and H. Y. Yu, "Segregation phenomena in a shaker". Powder Technology, Vol. 93(1): pp. 83-88, 1997.
[17] A. P. J. Breu, H. M. Ensner, C. A. Kruelle, and I. Rehberg, "Reversing the Brazil-nut effect: Competition between percolation and condensation". Physical Review Letters, Vol. 90(1): 014302, 2003.
[18] A. K. Jha and V. M. Puri, "Percolation segregation of multi-size and multi-component particulate materials". Powder Technology, Vol. 197(3): pp. 274-282, 2010.
[19] C. C. Liao, "Multisized immersed granular materials and bumpy base on the Brazil nut effect in a three-dimensional vertically vibrating granular bed". Powder Technology, Vol. 288: pp. 151-156, 2016.
[20] Y. Nahmad-Molinari, G. Canul-Chay, and J. C. Ruiz-Suarez, "Inertia in the Brazil nut problem". Physical Review E, Vol. 68(4): 041301, 2003.
[21] C. C. Liao, S. S. Hsiau, and C. S. Wu, "Experimental study on the effect of surface roughness of the intruder on the Brazil nut problem in a vertically vibrated bed". Physical Review E, Vol. 86(6): 061316, 2012.
[22] D. A. Huerta and J. C. Ruiz-Suarez, "Vibration-induced granular segregation: A phenomenon driven by three mechanisms". Physical Review Letters, Vol. 92(11): 114301, 2004.
[23] T. Firdani, "Investigation of Intruder Local Buoyancy Segregation Mechanism in a Vertically Vibrated Granular Bed". 2021, 國立中央大學能源工程研究所碩士論文.
[24] M. A. Naylor, M. R. Swift, and P. J. King, "Air-driven Brazil nut effect". Physical Review E, Vol. 68(1): 012301, 2003.
[25] M. E. Mobius, X. Cheng, P. Eshuis, G. S. Karczmar, S. R. Nagel, and H. M. Jaeger, "Effect of air on granular size separation in a vibrated granular bed". Physical Review E, Vol. 72(1): 011304, 2005.
[26] C. P. Liu, L. Wang, P. Wu, and M. Jia, "Effects of Gas Flow on Granular Size Separation". Physical Review Letters, Vol. 104(18): 188001, 2010.
[27] M. Klein, L. L. Tsai, M. S. Rosen, T. Pavlin, D. Candela, and R. L. Walsworth, "Interstitial gas and density segregation of vertically vibrated granular media". Physical Review E, Vol. 74(1): 010301, 2006.
[28] C. P. Clement, H. A. Pacheco-Martinez, M. R. Swift, and P. J. King, "The water-enhanced Brazil nut effect". Epl, Vol. 91(5): 54001, 2010. |