博碩士論文 110521137 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.149.238.239
姓名 莊凱傑(Kai-Jie Jhuang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有限尺寸六方氮化硼奈米帶之熱電特性
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著能源轉型的興起,熱電材料的研究愈發盛行,因為熱電材料可以將能源消耗所產生的廢熱轉換成電能,進而減少對地球的汙染。從過去的研究可以得知,石墨烯奈米帶在熱電材料領域中具有良好的應用潛力。因此,本論文想探討與石墨烯奈米帶晶格結構相似的六方氮化硼奈米帶的熱電特性。首先,我們先利用程式去建構模型後,再去改變尺寸、穿隧率及溫度並觀察電導、席貝克係數、功率因子及熱電優值的變化。我們從結果可以發現六方氮化硼奈米帶不僅聲子熱導較低,熱電參數也是相當穩定,功率因子及熱電優值不會因尺寸改變及環境因素而有劇烈的變化。
摘要(英) In recent years, with the rise of energy transition, research on thermoelectric materials has become increasingly popular. Thermoelectric materials have the ability to convert waste heat generated by energy consumption into electrical energy, thereby reducing pollution to the Earth. Previous research has shown that graphene nanoribbons have great potential in the field of thermoelectric materials. Therefore, this paper aims to research the thermoelectric performance of hexagonal boron nitride nanoribbons, which have a lattice structure similar to graphene nanoribbons. Firstly, we construct models using a program and then vary the dimensions, tunneling rates, and temperatures to observe changes in electrical conductivity, Seebeck coefficient, power factor, and thermoelectric figure of merit. From the results, we find that hexagonal boron nitride nanoribbons not only have lower phonon thermal conductivity but also exhibit stable thermoelectric parameters. The power factor and thermoelectric figure of merit do not undergo drastic changes with variations in dimensions or environmental factors.
關鍵字(中) ★ 氮化硼奈米帶
★ 熱電特性
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、 導論 1
1-1 前言 1
1-2 熱電效應 1
1-3 六方氮化硼 3
1-4 研究動機 5
第二章、 系統模型 6
2-1 六方氮化硼奈米帶耦合電極之系統 6
2-2 系統電子總能 7
2-3 熱電係數推導 8
第三章、 模擬結果與討論 10
3-1 帶寬對傳輸係數的影響 10
3-2 帶寬對熱電特性的影響 11
3-3 帶長對熱電特性的影響 13
3-4 穿隧率對熱電特性的影響 15
3-5 溫度對熱電特性的影響 17
第四章、 結論 19
參考文獻 20
參考文獻 [1] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
[2] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
[3] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014).
[4] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).
[5] T. C. Harman and J. M. Honig. Thermoelectric and thermomagnetic effects and applications. (McGraw-Hill, New York, 1967).
[6] A.F. Ioffe. Semiconductor thermoelements and thermoelectric cooling. (Infosearch Limited, London, 1957).
[7] D. Pacilé, J. C. Meyer, Ç. Ö. Girit and A. Zettl. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).
[8] O. N. Çelik and N. Ay, Y. Göncü. Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Particul. Sci. Technol. 31, 501 (2013).
[9] F. Chen, Y. Chen, M. Zhang and J. X. Zhong. Strain effect on transport properties of hexagonal boron–nitride nanoribbons. Chin. Phys. B 19, 086105 (2010).
[10] S. N. Perevislov. Structure, properties, and applications of graphite-like hexagonal boron nitride. Refract. Ind. Ceram. 60, 291 (2019).
[11] W. Q. Han, L. Wu, Y. Zhu, K. Watanabe and T. Taniguchi. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 223103 (2008).
[12] J. X. Deng, X. K. Zhang, Q. Yao, X. Y. Wang, G. H. Chan and D. Y. He. Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering. Chin. Phys. B 18, 4013 (2009).
[13] C. Klöpfer. Boron nitride - solution for aluminum extrusion. Aluminium-Düsseldorf Then Isernhagen-Aluminium Verlag GMBH, 82(5), 389 (2006).
[14] J. Eichler and C. Lesniak. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28, 1105 (2008).
[15] J. Eichler, K. Uibel and C. Lesniak. Boron nitride (BN) and boron nitride composites for applications under extreme conditions. Adv. Sci. Technol. 65, 61 (2010).
[16] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou and P. M. Ajayan. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).
[17] Y. M. Lin and M. S. Dresselhaus. Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003).
[18] T. C. Harman, P. J. Taylor, M. P. Walsh and B.E. LaForge. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).
[19] A. Tabarraei. Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Comput. Mater. Sci. 108, 66 (2015).
[20] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[21] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 10, 045222 (2020).
[22] T. T. Phung, R. Peters. A. Honecker, G. T. de Laissardiere and J. Vahedi. Spin-caloritronic transport in hexagonal graphene nanoflakes. Phys. Rev. B 102, 035160 (2020).
[23] R. S. Chen, G. L. Ding, Y. Zhou and S. T. Han. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 9, 11407 (2021).
[24] G. D. Mahan and L. M. Woods. Multilayer thermionic refrigeration. Phys. Rev. Lett. 80, 4016 (1998).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2023-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明