博碩士論文 110521151 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.118.210.229
姓名 戴君瑋(Jun-Wei Dai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有限長度石墨烯奈米帶之熱電特性;扶手形邊界與電極耦合
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯是一種二維材料,擁有良好的導電性和導熱性,並被廣泛研究應用。石墨烯奈米帶是一種引領至準一維領域的石墨烯衍生物,其在量子侷限效應的作用下展現出別於過往材料的熱電特性,因此被視為潛在的高效率熱電材料。本論文探討了有限長度的石墨烯奈米帶,並以電極線接觸扶手形邊緣(Armchair edge)來提供載子,研究其奈米帶及鋸齒型邊緣(Zigzag edge)對電子傳導性的影響。我們通過改變溫度、奈米帶長寬以及接觸電極使用的金屬材料,來觀察其對石墨烯奈米帶的電導、席貝克係數、功率因子及熱電優值等造成的變化。研究發現,石墨烯奈米帶在不同條件下具有不同的熱電特性,這些特性為其在熱電領域的應用提供了基礎。本研究為進一步了解石墨烯奈米帶在熱電轉換中的機制提供了重要的參考。
摘要(英) Graphene is a two-dimensional material that has been demonstrated to exhibit excellent electrical and thermal conductivity in previous experiments. Graphene nanoribbons(GNRs), in particular, have led to quasi-one-dimensional systems and, under the influence of quantum confinement effects, hold promise as high-efficiency thermoelectric materials. This study investigates the impact of zigzag edge of GNR contact on the electronic transport of finite-length graphene nanoribbons with armchair edges coupled to electrodes. We have demonstrated the unique thermoelectric properties of the GNRs under various in temperatures, ribbon lengths, widths, and the contacted electrodes. Our find says that we have significant insight on thermoelectric properties of GNRs.
關鍵字(中) ★ 石墨烯奈米帶
★ 熱電特性
★ 扶手形邊界
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、 導論 1
1-1前言 1
1-2石墨烯 (Graphene) 2
1-2.1石墨烯奈米帶 (Graphene Nanoribbons) 3
1-3由下而上合成法 (Bottom-Up Approach) 4
1-4研究動機 6
第二章、 研究方法與系統模型 7
2-1石墨烯晶格結構 7
2-2漢米爾頓算符(Hamiltonian) 8
2-2.1接觸電極 9
2-3電子傳輸係數與熱電係數 11
第三章、 模擬與分析 14
3.1 尺寸對ZGNRs之熱電特性的影響 14
3-2 穿隧率對ZGNRs之熱電特性的影響 16
3.3 溫度對ZGNRs之熱電特性的影響 17
3.4 尺寸對AGNRs之熱電特性的影響 19
3.5 穿隧率對AGNRs之熱電特性的影響 21
第四章、 結論 22
參考資料 23
參考文獻 [1] Y. M. Lin and M. S. Dresselhaus. Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003).
[2] L. D. Hicks and M. S. Dresselhaus. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).
[3] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
[4] P. Cataldi, A. Athanassiou, and I. S. Bayer. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 8, 1438 (2018).
[5] X. J. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. R. Hu. Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Mater. 3, 025021, (2016).
[6] J. Molina. Graphene-based fabrics and their applications: A review. RSC Adv. 6, 68261 (2016).
[7] W. J. Hyun, O. O. Park, B. D. Chin. Foldable graphene electronic circuits based on paper substrates. Adv. Mater. 25, 4729 (2013).
[8] E. Pop, V. Varshney, and A. K. Roy. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 32, 1273 (2012).
[9] M. Sang, J. Shin, K. Kim, and K. J. Yu. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9, 374 (2019).
[10] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).
[11] A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature mater. 10, 569 (2011).
[12] L. D. Hicks and M. S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).
[13] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, 10493 (1996).
[14] N. Nakpathomkun, H. Q. Xu, and H. Linke. Thermoelectric efficiency at maximum power in low-dimensional systems. Phys. Rev. B 82, 235428 (2010).
[15] M. Y. Han, B. Ozyulmaz, Y. B. Zhang, and P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
[16] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).
[17] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920 (1996).
[18] J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Muellen, and R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010).
[19] G. D. Nguyen, H. Z. Tsai, A. A. Omrani, T. Marangoni, M. Wu, D. J. Rizzo,
G. F. Rodgers, R. R. Cloke, R. A. Durr, Y. Sakai, F. Liou, A. S. Aikawa,
J. R. Chelikowsky, S. G. Louie, F. R. Fischer, and M. F. Crommie. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nature Nanotech. 12, 1077 (2017).
[20] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Z. Zhao, H. Rodriguez,
S. G. Louie, M. F. Crommie, and F. R. Fischer. Topological band engineering of graphene nanoribbons. Nature 560, 204 (2018).
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films.
Science 306, 666 (2004).
[22] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai,
A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912 (2004).
[23] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009).
[24] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271 (1999).
[25] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920 (1996).
[26] K. Wakabayashi, M. Sigrist, and M. Fujita. Spin wave mode of edge-localized magnetic states in nanographite zigzag ribbons. J. Phys. Jpn. 67, 2089 (1998).
[27] David M. T. Kuo and Y. C. Chang. Contact effects on thermoelectric properties of textured graphene nanoribbons. Nanomaterials 12, 3357 (2022).
[28] Y. Matsuda, W. Q. Deng, and W. A. Goddard. Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics.
J. Phys. Chem. C 114, 17845 (2010).
[29] David M. T. Kuo. Effects of metallic electrodes on the thermoelectric properties of zigzag graphene nanoribbons with periodic vacancies. J. Phys.: Condens. Matter 35, 305301 (2023).
[30] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[31] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 4, 045222 (2020).
[32] Y. Meir and N. S. Wingreen. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992).
[33] T. Yamamoto, S. Watanabe, and K. Watanabe. Universal features of quantized thermal conductance of carbon nanotubes. Phys. Rev. Lett. 92, 075502 (2004).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2023-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明