博碩士論文 110328019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.145.69.185
姓名 陳鵬宇(Peng-Yu Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 流動式顆粒床過濾器應用於去除多種汙染物之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 不同飽和態下兩相局部潰壩流場中流動行為之探討
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-31以後開放)
摘要(中) 隨著工業革命快速的發展,人類的科技水平也大幅度的進步,伴隨著人類科技的進步,所消耗能源也越來越多。各國早期均以燃煤發電為主,這也直間造成了全球環境的議題,如溫室氣體排放、能源危機、環境污染等等。隨著先進燃煤機組IGCC與PFBC被學者們相繼提出,高溫氣體淨化技術應用於在先進燃煤機組可以大幅增加熱力學上的顯能,且有效降低整體技術成本等優點。高溫氣體淨化技術中,移動式顆粒床過濾器已被前人驗證可用於去除粉塵儲焦油;且顆粒床過濾器具有耐高溫、耐酸鹼、低壓損並可以連續操作下、過濾效率高等優點。
本研究基於前人所開發之移動式顆粒床過濾器,將其應用於去除多種汙染氣,並針對其性能進行探討。本研究濾材使選用經濟性的石灰石,使用7500ppmw粉塵濃度和500ppmv二氧化硫當作汙染氣,並於顆粒床過濾器出口處安裝氣體分析儀和線上粉塵與粒徑量測系統(ppc)進行線上量測,以評估整體顆粒床過濾器性能。
本實驗研究了表面風速、入口溫度、加熱溫度與濾材質量流率對整體除塵脫除硫的過濾效率影響。實驗結果顯示顆粒床體加熱溫度至800°C和表面風速為30 cm/s時濾材的脫硫效率可達98%。除塵效率可達98.3%;在150g/min的質量流率下有較佳的除塵效果;脫流方面隨濾材質量流率愈慢,脫硫效率有升高之趨勢,這是由於濾材在床體內被充分加熱而導致。
從吸附硫份後的濾材進行探討,在床體加熱溫度600°C和800°C的實驗條件下,從EDX組份分析中,濾材硫份從0.11%到1.11%這也直接說明顆粒床本體加熱對脫硫性能及其重要。表面風速30cm/s、40cm/s和45cm/s的濾材硫份比,30cm/s的濾材硫份較高,這也說明低風速對於移動式顆粒床過濾器之脫硫有較佳的性能。

關鍵字:移動式顆粒床過濾器、高溫氣體淨化、同步除塵除硫
摘要(英) With the rapid development of the Industrial Revolution, human technological advancements have significantly progressed, leading to an increased consumption of energy. In the early stages, countries primarily relied on coal-fired power generation, which directly resulted in global environmental issues such as greenhouse gas emissions, energy crises, and environmental pollution. As advanced coal-fired units, such as IGCC and PFBC, were successively proposed by scholars, the application of high-temperature gas purification technology in these advanced coal-fired units has shown significant thermodynamic improvements and effective reduction of overall technical costs. Among the high-temperature gas purification technologies, the mobile granular bed filter has been verified by previous researchers for its ability to remove dust and tar, offering advantages such as high-temperature resistance, acid and alkali resistance, low pressure drop, and high filtration efficiency.
This study is based on the previously developed mobile granular bed filter and applies it for dust and sulfur removal, investigating its performance. Economically viable limestone is chosen as the filtering material, with a dust concentration of 7500 ppmw and a sulfur dioxide concentration of 500 ppmv used as the contaminated gas. Gas analyzers and PPC (Process Particle Counter PPC-100) are installed at the outlet of the granular bed filter for online measurement to evaluate the overall performance of the filter.
The experimental study investigates the effects of wind speed, inlet temperature, heating temperature, and filtering material mass flow rate on the filtration efficiency for dust and sulfur removal. The experimental results show that heating the granular bed to 800°C with a wind speed of 30 cm/s achieves a sulfur removal efficiency of 98%. The dust removal efficiency can reach 98.3%. A better dust removal effect is observed at a mass flow rate of 150 g/min. Regarding desorption, a slower filtering material mass flow rate leads to an increased sulfur removal efficiency, attributed to the thorough heating of the filtering material inside the bed.

The study further examines the filtered material after sulfur adsorption. Under experimental conditions with bed heating temperatures of 600°C and 800°C, EDX component analysis reveals an increase in sulfur content from 0.13% to 1.11% in the filtering material, highlighting the importance of bed heating for desulfurization performance. A comparison of sulfur content between surface wind speeds of 30 cm/s to 45 cm/s shows higher sulfur content at 30 cm/s, indicating better desulfurization performance at lower wind speeds for the moving granular bed filter.

Keywords: Moving granular bed filter, High-temperature gas cleaning , Simultaneous dust and sulfur removal
關鍵字(中) ★ 移動式顆粒床過濾器
★ 高溫氣體淨化
★ 同步除塵除硫
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 v
附圖目錄 vii
表格目錄 x
符號目錄 xi
1 第一章 緒論 1
1.1 前言 1
1.1.1 集塵器系統介紹 2
1.1.2 脫硫工藝技術介紹 3
1.2 研究動機與目的 4
1.3 文獻回顧 4
1.4 顆粒床系統簡介 5
1.5 論文章節架構 6
2 第二章 研究設備與步驟 12
2.1 中高溫脫硫除塵實驗設備與方法 13
2.1.1 除塵過濾機制探討 13
2.1.2 脫硫機制探討 15
2.1.3 實驗設備 17
2.1.4 量測設備 19
2.2 實驗參數 21
2.3 實驗步驟 22
3 第三章 結果與討論 38
3.1 壓降差探討 38
3.2 質量流濾對脫硫除塵效率的影響 39
3.3 表面風速對脫硫除塵效率的影響 39
3.4 入口溫度對脫硫除塵的影響 40
3.5 床體溫度對脫硫除塵的引響 40
3.6 濾材為結構與組粉探討 41
4 結論 59
參考文獻 60
參考文獻 [1] IPCC. Climate change 2001: impacts, adaptation and vulnerability. Report of the working group II. UK: Cambridge University Press; 2001. p. 967
[2] IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary
for policymakers and technical summary, WG II contribution to the AR4. UK:
Cambridge University Press; 2007. p. 93.
[3] Greene CH, Pershing AJ. Climate-driven sea change. Science 2007;315:1084e5.
[4] 台灣電力公司. "歷年裝置容量及結構."
https://www.taipower.com.tw/tc/page.aspx?mid=212&cid=120&cchk=f3a1b1e0 -03e5-45fa-b72e-b28c5cb94f37
[5] Yang F, Dian J, Liu ZH. Can Taiwan′s "2025 Non-Nuclear Homeland" policy achieve the expected carbon emission reduction goals? Journal of Cleaner Production. 2022;380.
[6] D.H. Smith, G. Ahmadi, Problems and progress in hot-gas filtration for pressurized
fluidized bed combustion (PFBC) and integrated gasification combined cycle
(IGCC), Aerosol Science and Technology 29 (1998) 163–169.
[7] V. Zakkay, E. A. M. Gbordzoe, K. M. Sellakumar, and C. Q. Lu, "Performance of Hot Gas Clean-Up Devices Tested at the NYU DOE-PFBC Facility," in 1989 Joint Power Generation Conference: GT Papers, 1989, vol. 1989 Joint Power Generation Conference: GT Papers, V001T01A008, doi: 10.1115/89-jpgc/gt-8. [Online]. Available: https://doi.org/10.1115/89-JPGC/GT-8.
[8] L. K. Wang, N. C. Pereira, and Y.-T. Hung, Air pollution control engineering. Springer, 2004.
[9] 陳世偉, "空氣淨化工程學," 中華水電空調雜誌出版社。
[10] Lin JCT, Hsiao TC, Hsiau SS, Chen DR, Chen YK, Huang SH, et al. Effects of temperature, dust concentration, and filtration superficial velocity on the loading behavior and dust cakes of ceramic candle filters during hot gas filtration. Separation and Purification Technology. 2018;198:146-54.
[11] Wu QR, Gu M, Du YG, Zen HX. Synergistic removal of dust using the wet flue gas desulfurization systems. Royal Society Open Science. 2019;6(7).
[12] Yang HM, Kim SS. Experimental study on the spray characteristics in the spray drying absorber. Environmental Science & Technology. 2000;34(21):4582-6.
[13] Wu BB, Tian HZ, Hao Y, Liu SH, Liu XY, Liu W, et al. Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitators on Emission Characteristics of Particulate Matter and Its Ionic Compositions from Four 300 MW Level Ultralow Coal-Fired Power Plants. Environmental Science & Technology. 2018;52(23):14015-26.
[14] 張立群, "移動式顆粒床過濾器應用於中高溫除塵及除焦油," 碩士, 機械工程學系,國立中央大學,中華民國一O七年.
[15] 廖承恩, "移動式顆粒床過濾器之去除焦油效率的研究," 碩士, 機械工程學系, 國 立中央大學,中華民國一O七年.
[16] 陳韋豪, "移動式顆粒床過濾器應用於移除酸性氣體之研究," 碩士, 機械工程學系, 國立中央大學,中華民國一百一十一年.
[17] Harrington W, Morgenstern R, Shih JS, Bell ML. Did the Clean Air Act Amendments of 1990 really improve air quality? Air Quality Atmosphere and Health. 2012;5(4):353-67.
[18] Shi, B.; Xu, W.; Wu, E.; Wu, W.; Kuo, P. C. Novel Design of Integrated Gasification Combined Cycle (IGCC) Power Plants with CO2 Capture. J. Cleaner Prod. 2018, 195, 176−186
[19] Shen, M.; Tong, L.; Yin, S.; Liu, C.; Wang, L.; Feng, W.; Ding, Y. Cryogenic Technology Progress for CO2 Capture Under Carbon Neutrality Goals: A Review. Sep. Purif. Technol. 2022, 299, No. 121734.
[20] Sánchez-Hervás, J. M.; Maroño, M.; Fernández-Martínez, R.;Ortiz, I.; Ortiz,R.; Gómez- Mancebo, M. B. Novel ZnO-NiOGraphene-based Sorbents for Removal of Hydrogen Sulfide at Intermediate Temperature. Fuel 2022, 314, No. 122724.
[21] Sato, A. K. C.; Paulino, R. F. S.; de Campos, V. A. F.; Tuna, C.E.; Silveira, J. L. Technical and Economic Aspects of Coke Gasification in the Petroleum Refining Industry. Fuel 2022, 323,No. 124225
[22] Tezer, Ö.; Karabağ, N.; Öngen, A.; Çolpan, C. Ö.; Ayol, A.Biomass Gasification for Sustainable Energy Production: A Review.Int. J. Hydrogen Energy 2022, 47, 15419−15433.
[23] Wang TC, Wei L-W, Huang HL, Lin K-S, Wang HP. High-Temperature Syngas Desulfurization and Particulate Filtration by ZnO/Ceramic Filters. ACS Omega. 2023;8(15):13813-8.
[24] Kuo HP, Tseng HY, Huang AN, Hsu RC. A study of the ash production behavior of spent limestone powders in CFBC. Advanced Powder Technology. 2014;25(1):472-5.
[25] Zhao H, Huang J, Wu J, Fang Y, Wang Y. Modeling and optimization of the moving granular bed for combined hot gas desulfurization and dust removal. Powder Technology. 2008;180(1-2):2-8.
[26] R. C. Flagan, J. H. Seinfeld, “Fundamentals of air pollution Engineering”, Prentice-Hall, Inc. 1998.
[27] H. Zhang, G. Ahmadi, “Particle transport and deposition in the hot-gas filter vessel at Wilsonville”, Powder Technology, Vol. 116, pp. 53–68, 2001.
[28] Kaufmann, E., Bouman, D., Theunis, A., Kleiberg, X., Megen, R. van, “Black Carbon Reduction”, Rotterdam Mainport University of Applied and Sciences, 2014.
[29] R. Zevenhoven and P. Kilpinen, "Control of pollutants in flue gases and fuel gases," Helsinki Univ. of Technology, Otaniemi (Finland). Energy Engineering and Environmental Protection, Finland, 2001.
[30] Ishikawa, K., Kawamata, N., Kamei, K. (1993). IGCC發電系統同時脫硫除塵工藝的開發. In: Clift, R., Seville, J.P.K. (eds) Gas Cleaning at High Temperatures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2172-9_27
[31] Y. S. Chen, S. S. Hsiau, S. C. Laia, Y. P. Chyoub, H. Y. Lia and C. J. Hsu,
“Filtration of dust particulates with a moving granular bed filter”, Vol 171, pp. 987-994,
2009
[32] S.S. Hsiau, J. Smid, C.Y. Wang, J.T. Kuo and Chou, C.S.“Velocity Profiles of Granules in Moving Bed Filters”, Chemical Engineering Science, Vol. 54, pp. 293-301, 1999.
[33] S. S. Hsiau, J. Smid, F. H. Tsai, J. T. Kuo, and C. S. Chou, "Placement of flow-corrective elements in a moving granular bed with louvered-walls," Chemical Engineering and Processing-Process Intensification, vol. 43, no. 8, pp. 1037-1045, Aug 2004, doi: 10.1016/j.cep.2003.10.006.
[34] J.T. Kuo, J. Smid, S.S. Hsiau, C.Y. Wang and C.S. Chou, “Stagnant zones in granular moving bed filters for flue gas cleanup”, Filtration and Separation, Vol 35, pp. 529-534, 1998.
[35] Y. Deng, R. Ansart, J. Baeyens, and H. Zhang, "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, vol. 12, no. 20, p. 3908, 2019. [Online]. Available: https://www.mdpi.com/1996-1073/12/20/3908
[36] 許端佑,「移動式顆粒床之進口粉塵濃度與再生循環對過濾效率的影響」,
國立中央大學,碩士論文,民國一O六年。
[37] 陸亞俊、馬最良、鄒平華(2007)。暖通空調(第二版)。北京:中國建築工業出版

[38] P. Gupta, L. G. Velazquez-Vargas, C. Valentine, and L.-S. Fan, "Moving bed reactor setup to study complex gas-solid reactions," Review of Scientific Instruments, vol. 78, no. 8, p. 085106, 2007, doi: 10.1063/1.2760746.
[39] M. J. H. Snow, J. P. Longwell, and A. F. Sarofim, "Direct sulfation of calcium carbonate," Industrial & Engineering Chemistry Research, vol. 27, no. 2, pp. 268-273, 1988/02/01 1988, doi: 10.1021/ie00074a011
[40] Y. B. Kim, Y. R. Gwak, S. I. Keel, J. H. Yun, and S. H. Lee, "Direct desulfurization of limestones under oxy-circulating fluidized bed combustion conditions," Chemical Engineering Journal, vol. 377, p. 119650, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.cej.2018.08.03
[41] S. Michel, "Experimental Data and Calculation of Kinetic Laws of Heterogeneous Reactions," in An Introduction to Chemical Kinetics, 2011, pp. 109-133.
[42] S. Arabi and H. H. Rafsanjani, "Modeling and Simulation of Noncatalytic Gas-Solid Reaction in a Moving Bed Reactor," Chemical Product and Process Modeling, vol. 3, no. 1, 2008, doi: doi:10.2202/1934-2659.1230.
[44] C. Tullin and E. Ljungstroem, "Reaction between calcium carbonate and sulfur dioxide," Energy & Fuels, vol. 3, no. 3, pp. 284-287, 1989/05/01 1989, doi: 10.1021/ef00015a003.
[45] Y. S. Chen, S. S. Hsiau, S. C. Lai, Y. P. Chyou, H. Y. Li, and C. J. Hsu, "Filtration of dust particulates with a moving granular bed filter," Journal of Hazardous Materials, vol. 171, no. 1-3, pp. 987-994, Nov 2009, doi: 10.1016/j.jhazmat.2009.06.103.
[46] Y. S. Chen and S. S. Hsiau, "Cake formation and growth in cake filtration," Powder Technology, vol. 192, no. 2, pp. 217-224, Jun 2009, doi: 10.1016/j.powtec.2008.12.014.
[47] Y. S. Chen and S. S. Hsiau, "Influence of filtration superficial velocity on cake compression and cake formation," Chemical Engineering and Processing-Process
[48] Yao XA, Zhang H, Yang HR, Liu Q, Wang JW, Yue GX. An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. Fuel Processing Technology. 2010;91(9):1119-24 W. Widayat, T. Darmawan, H. Hadiyanto, and R. A. Rosyid, "Preparation of Heterogeneous CaO Catalysts for Biodiesel Production," Journal of Physics: Conference Series, vol. 877, p. 012018, 2017/07 2017, doi: 10.1088/1742-6596/877/1/012018.
[49] J. Ingham, I. Dunn, E. Heinzle, J. Prenosil, and J. Snape, "Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation: Third Edition," Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation: Third Edition, pp. 1-618, 10/25 2007, doi: 10.1002/9783527614219
[50] S. Ergun, "Fluid flow through packed columns," in Chemical Engineering Progress, 1952, vol. 48, pp. 89-94.
[51] Yu, Y., Tao, Y., Wang, F. L., Chen, X., & He, Y. L. (2020). Filtration performance of the granular bed filter used for industrial flue gas purification: A review of simulation and experiment. Separation and Purification Technology, 251, 117318.
[52] Shi, K. Y., Yang, G. H., Huang, S., Tian, S. R., Hu, Z. F., & Huang, B. L. (2015). Study on filtering characteristics of aerosol particulates in a powder-grain dual-layer granular bed. Powder Technology, 272, 54-63.
[53] 張家維, "兩階段移動式顆粒床之研究," 博士, 機械工程學系, 國立中央大學, 2020.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明