博碩士論文 110521037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.16.130.93
姓名 黃奕鈞(Yi-Jun Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 缺陷對紋理化鋸齒型石墨烯奈米帶熱電特性的影響
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱電材料近年來是極熱門的研究方向,半導體熱電元件具有尺寸小、結構單純及可靠性高等優點,近年來是綠色能源的重要選項。而石墨烯奈米帶(Graphene Nanoribbons)則為一種很有潛力的熱電材料,近來,有文獻出現將鋸齒型石墨烯奈米帶(Zigzag Graphene Nanoribbons)有週期性的把上下兩端鋸齒邊緣的原子移除掉進而變成紋理化鋸齒型石墨烯奈米帶(textured ZGNRs)之方法,此種作法促使量子侷限效應的發生進而出現類似位障的效果,使金屬特性轉變為半導體特性。同時在製程中,材料可能出現缺陷(defect),這種缺陷會因出現的位置不同對紋理化鋸齒型石墨烯奈米帶的熱電特性產生不同的影響,例如我們發現紋理化鋸齒型石墨烯奈米帶對於缺陷出現在結構內部造成的影響較不敏感。本文章將會著重在缺陷對紋理化鋸齒型石墨烯奈米帶的熱電特性的討論。
摘要(英) The semiconductor thermoelectric devices have the advantage of small size, simple structure, and high reliability, it is one of the most important green energies. Graphene nanoribbon is a very promising thermoelectric material. A method for turning zigzag graphene nanoribbons into textured zigzag graphene nanoribbons by periodically removing atoms from the zigzag edges at the top and bottom has been proposed. The indented edges induce cause quantum confinement effects, resulting in a barrier-like effect that transforms the metal characteristics into semiconductor characteristics. During the fabrication process, defects may occur in the material, and the effects of these defects on the thermoelectric properties of the textured zigzag graphene nanoribbons may vary depending on their location. We found that the textured zigzag graphene nanoribbons are less sensitive to defects in the interior sites.
關鍵字(中) ★ 缺陷
★ 紋理化鋸齒型石墨烯奈米帶
★ 熱電特性
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、導論 1
1-1 前言 1
1-2 熱電效應 2
1-3 石墨烯 3
1-4 由下而上合成 5
1-5 研究動機 6
第二章、系統模型 7
2-1石墨烯奈米帶 7
2-2熱電係數 8
2-3 紋理化鋸齒型石墨烯奈米帶 10
2-4缺陷 13
第三章、熱電特性的模擬及分析 14
3-1紋理化對熱電特性的影響 14
3-2缺陷位置對熱電特性的影響 16
3-3缺陷能量偏移對熱電特性的影響 20
3-4多個缺陷對熱電特性的影響 22
第四章、結論 25
參考文獻 26
參考文獻 [1] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O′Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
[2] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis. Cubic AgPb(m)SbTe(2+m): Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).
[3] M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
[4] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).
[5] David M. T. Kuo and Y. C. Chang. Contact effects on thermoelectric properties of textured graphene nanoribbons. Nanomaterials 12, 3357 (2022).
[6] T. C. Harman and J. M. Honig. Thermoelectric and thermomagnetic effects and applications. (McGraw-Hill, New York, 1967).
[7] A. F. Ioffe. Semiconductor thermoelements and thermoelectric cooling. (Infosearch Limited, London, 1957).
[8] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater. 6, 183 (2007).
[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
[10] J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Mullen and R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010).
[11] T. C. Li and S. P. Lu. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008).
[12] K. Wakabayashi, M. Fujita, H. Ajiki and M. Sigrist. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271 (1999).
[13] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[14] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 10, 045222 (2020).
[15] H. Sevincli and G. Cuniberti. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2023-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明