博碩士論文 108328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.223.238.150
姓名 董致賢(Zhi-Xian Dung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較
(Comparison of dimensional consistency between rapid casting and one/two stage wax injection molding in the investment casting of manifold)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討在熔模鑄造過程中改善精密鑄造的尺寸精度的策略。在實踐中,精密鑄造中的尺寸改進通常涉及修改主模的尺寸。這些修改通常需要重製昂貴的主要模具。為了解決這個問題,我們提出了一種兩階段射蠟方法,通過降低蠟模在射蠟後的收縮率,使產品更接近設計尺寸,而無需重新製作主模具。我們為內部粗略輪廓製作了一個小模具,並採用兩階段射蠟過程來改善產品的尺寸。我們的研究表明,與傳統的直接射蠟方法相比,兩階段射蠟方法更接近產品的設計尺寸。
  從整體尺寸的角度來看,方案A與設計尺寸之間的平均偏差為0.9毫米。然而,兩階段射蠟方法將原始方案的平均偏差降低到0.65毫米,並將平均偏差進一步降至0.25毫米,與設計尺寸相比。這表明兩階段射蠟方法,透過降低歧管在製造流程過多的收縮變形,收縮率由0.043降低到0.030,使產品更接近設計尺寸。
  此外,本研究比較了快速鑄造方法與精密鑄造方法,並發現在尺寸收縮方面存在相似性。這表明可以在管道開發時間表中使用快速製造技術,無需金屬模具即可在幾天內生產蠟型。這有助於在開發時間表中減少金屬模具生產所需的時間和成本,同時先行了解鑄造後產品變形以及可能出現的缺陷。
  本研究的主要貢獻有兩個方面。首先,我們提出了使用兩階段射蠟方法來提高尺寸精度的可行性。其次,我們展示了從快速鑄造3D打印PLA模型和熔模鑄造獲得的最終產品之間的一致性,凸顯了快速鑄造在管道開發中的價值。
摘要(英) This study investigates strategies to improve dimensional accuracy in precision casting during the investment casting process. In practice, dimensional improvement in precision casting typically involves modifying the dimensions of the main mold. These modifications often require costly redevelopment of the main mold. To address this issue, we propose a two-stage wax injection method, which innovatively enhances the wax pattern dimensions without the need to remake the main mold. Instead, a small mold is created for the internal rough contour, and a two-stage wax injection process is employed to improve the dimensions of the manifold product. Our research reveals that the two-stage wax injection method exhibits better dimensional accuracy compared to the traditional direct wax injection method.
From an overall dimensional perspective, the average deviation between Scheme A and the design dimensions is 0.9 millimeters. However, the two-stage wax injection method reduces the average deviation of the original scheme to 0.65 millimeters, and further decreases the average deviation to 0.25 millimeters compared to the design dimensions. This indicates that the two-stage wax injection method, by reducing excessive shrinkage deformation in the manufacturing process of the manifold, lowers the shrinkage rate from 0.043 to 0.030, bringing the product closer to the design dimensions.
Additionally, this study compares rapid casting methods with precision casting methods and identifies similarities in terms of dimensional shrinkage. This suggests that rapid manufacturing techniques can be employed in the manifold development timeline, enabling the production of wax patterns within a few days without the need for metal molds. This helps to gain early insights into the casting shrinkage rate while reducing the time and costs associated with metal mold production during the development timeline.
The primary contributions of this study are twofold. Firstly, we propose the feasibility of using the two-stage wax injection method to enhance dimensional accuracy. Secondly, we demonstrate the consistency between the final products obtained from rapid casting 3D printed PLA models and investment casting, highlighting the value of rapid casting in manifold development.
關鍵字(中) ★ 精密鑄造
★ 歧管
★ 收縮率
★ 模具
★ 射蠟
關鍵字(英) ★ Investment Casting
★ Manifold
★ Shrinkage
★ Mold
★ Waxing
論文目次 摘 要 I
Abstract III
誌 謝 V
圖目錄 VIII
表目錄 X
第一章:緒論 1
1-1 前言 1
1-2 研究動機與方法 3
第二章:文獻回顧 5
2-1 精密鑄造 5
2-2 快速鑄造 6
第三章:材料與實驗設置 7
3-1 實驗設備 7
3-2 實驗方法及參數 13
第四章:結果與討論 19
4-1 二階段射蠟對尺寸影響 19
4-1-1收縮情形討論 20
4-1-2射蠟製程的收縮率與尺寸變異 22
4-1-3 澆注製程的收縮率與尺寸變異 24
4-2 快速鑄造製程對精密鑄造製程的一致性 29
4-2-1快速鑄造與精密鑄造掃描圖比較 30
4-2-2 快速鑄造與精密鑄造的尺寸一致性 31
4-3 葉輪快速鑄造成果 32
第五章:結論 35
參考文獻 36
6-1歧管各鑄造組樹方案之模擬結果 38
6-2 葉輪快速鑄造成果 44
參考文獻 1. Barnett, S.O., 1988. Investment casting—the multi-process technology. Foundry Trade Journal 11 (3), 33–37.
2. Eddy, W.P., Barbero, R.J., Dieters, W.I., Esarey, B.J., Frey, L., Gros, J.R., 1974. In: Lyman, T. (Ed.), Investment Casting. American Society for Metals, Ohio, pp. 237–261
3. Pattnaik, Sarojrani, D. Benny Karunakar, and Pradeep Kumar Jha. "Developments in investment casting process—a review." Journal of Materials Processing Technology 212.11 (2012): 2332-2348
4. Kuo, Chil-Chyuan, and Wei- Cong Xu. "Effects of different cooling channels on the cooling efficiency in the wax injection molding process." The International Journal of Advanced Manufacturing Technology 98 (2018): 887-895.
5. Craig, R.G., Eick, J.D., Peyton, F.A., 1965. Properties of natural waxes used in dentistry. Journal of Dental Research 44 (6), 1308–1316
6. Kuo, CC., Xu, W.C. Effects of different cooling channels on the cooling efficiency in the wax injection molding process. Int J Adv Manuf Technol 98, 887–895 (2018).
7. Wang, D., Sun, J., Dong, A. et al. Prediction of core deflection in wax injection for investment casting by using SVM and BPNN. Int J Adv Manuf Technol 101, 2165–2173 (2019).
8. Zago, Marco, et al. "Dimensional and geometrical precision of parts produced by Binder Jetting process as affected by the anisotropic shrinkage on sintering." Additive Manufacturing 43 (2021): 102007.
9. Dong, Yiwei, et al. "Modeling of shrinkage characteristics during investment casting for typical structures of hollow turbine blades." The International Journal of Advanced Manufacturing Technology 110 (2020): 1249-1260.
10. Burlaga, B.; Kroma, A.; Poszwa, P.; Kłosowiak, R.; Popielarski, P.; Stręk, T. Heat Transfer Analysis of 3D Printed Wax Injection Mold Used in Investment Casting. Materials 2022, 15, 6545.
11. Lee, C.W., Chua, C.K., Cheah, C.M. et al. Rapid investment casting: direct and indirect approaches via fused deposition modelling. Int J Adv Manuf Technol 23, 93–101
12. Kuo, CC., Tasi, YR., Chen, MY. et al. Development of a cost-effective technique for batch production of precision wax patterns using 3D optical inspection and rapid tooling technologies. Int J Adv Manuf Technol 117, 3211–3227 (2021).
13. Kang, Jw., Ma, Qx. The role and impact of 3D printing technologies in casting. China Foundry 14, 157–168 (2017).
14. Tharmalingam Sivarupan, Nagasivamuni Balasubramani, Prateek Saxena, Devarajan Nagarajan, Mohamed El Mansori, Konstantinos Salonitis, Mark Jolly, Matthew S. Dargusch, A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting, Additive Manufacturing, Volume 40, 2021, 101889, ISSN 2214-8604
15. Meet Upadhyay, Tharmalingam Sivarupan, Mohamed El Mansori, 3D printing for rapid sand casting—A review, Journal of Manufacturing Processes, Volume 29, 2017, Pages 211-220, ISSN 1526-6125
16. Sadegh Rahmati, Mohamad Reza Rezaei, Javad Akbari, Design and Manufacture of a Wax Injection Tool for Investment Casting Using Rapid Tooling, Tsinghua Science & Technology, Volume 14, Supplement 1, 2009, Pages 108-115, ISSN
17. Kuo, CC., Chen, WH., Liu, XZ. et al. Development of a low-cost wax injection mold with high cooling efficiency. Int J Adv Manuf Technol 93, 2081–2088 (2017).
18. Wang D, Dong A, Zhu G, Shu D, Sun J, Li F, Sun B (2019) Rapid casting of complex impeller based on 3D printing wax pattern and simulation optimization. Int J Adv Manuf Technol 100:2629–2635
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明