參考文獻 |
[1] http://journal.bit.edu.cn/fileBJLGDXXBSKB/journal/article/bjlgdxxbshkxb/2022/2/PDF/S20220194.pdf
[2] http://eer.hbue.edu.cn/_upload/article/files/f5/e1/b448880f4ba191c31064ad2d99aa/9eb0c076-61f7-45e4-b5ff-19cfcabe497e.pdf
[3] https://www.ettoday.net/news/20211116/2125117.htm
[4] https://www.digiknow.com.tw/knowledge/6258ee0d906b1
[5] https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F
[6] https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F
[7] https://www.chinatimes.com/newspapers/20171027000388-260208?chdtv
[8] https://www.materialsnet.com.tw/industry/NewProductView.aspx?pid=1164
[9] https://www.ettoday.net/news/20180428/1159291.htm
[10] http://www.taitung.gov.tw/News_Content.aspx?n=E4FA0485B2A5071E&s=0E1D042043578E1D
[11] https://www.greentrade.org.tw/zh-hant/knowledge/%e7%b6%a0%e8%89%b2%e8%b2%bf%e6%98%93%e7%a0%94%e7%a9%b6%e9%99%a2/%e7%b6%a0%e8%89%b2%e9%9b%bb%e5%8a%9b%e6%96%b0%e5%af%b5%e5%85%92%ef%bc%8d%e7%87%83%e6%96%99%e9%9b%bb%e6%b1%a0
[12] https://toplus-e.com.tw/blog/19/81
[13] file:///C:/Users/User/Downloads/201798152754%20.pdf
[14] https://toplus-e.com.tw/blog/19/31
[15] http://www.secutech.com/15/download/Energy-saving_handbook.pdf
[16] http://140.127.113.65/et718/cfeen/L2/news_data/201009291.pdf
[17] 黃鎮江,燃料電池,台灣台中,滄海書局,2008。
[18] S. R. Narayan, T. I. Valdez, “High-energy portable fuel cell power sources”, The Electrochemical Society Interface, vol. 17, pp. 40-45, 2008.
[19] IEA, Technology Roadmap Hydrogen and Fuel Cells , 2015.
[20] F. Liu, C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol. 13, 4736, 2021.
[21] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[22] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon,“The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, vol. 158, pp. 225-232, 2003.
[23] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 51, pp. 1-8, 2015.
[24] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells - Now and future”, Materials Reports: Energy, vol. 1, pp. 100003, 2021.
[25] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, vol. 45, pp. 23988-24013, 2020.
[26] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, vol. 47, pp. 19810-19820, 2022.
[27] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, vol. 3, pp. 113-121, 2001.
[28] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid‐Oxide Fuel Cell Technology”, ChemElectroChem, vol. 3, pp. 511-530, 2016.
[29] K. Xie, R. Yan, X. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[30] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, vol. 33, pp. 2826-2833, 2008.
[31] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,” Encyclopedia of Electrochem. Power Sources, 17-24, 2009.
[32] J. Rossmeisl, W. G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, vol. 178, pp. 1694-1700, 2008.
[33] B. H. Rainwater, M. Liu, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, vol. 37, pp. 18342-18348, 2012.
[34] J. J. Haslam, A. Q. Pham, B. W. Chung, J. F. DiCarlo, R. S. Glass, “Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell”, Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005.
[35] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, vol. 141, pp. 79-95, 2005.
[36] C. Sun and U. Stimming, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007.
[37] S. McIntosh and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chemical Reviews, vol. 104, pp. 4845-4866, 2004.
[38] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones, J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, vol. 179, pp. 2155-2159, 2008.
[39] A. Arabac, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, vol. 38, pp. 6509-6515, 2012.
[40] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, vol. 9, pp. 984-1011, 2021.
[41] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, vol. 18-19, pp. 1003-1007, 1986.
[42] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, vol. 168, pp. 299-310, 2004.
[43] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, vol. 143, 1996.
[44] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants”, Electrochemical and Solid-State Letters, vol. 10, pp. B77-B80, 2007.
[45] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[46] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 156, pp. 111985, 2022.
[47] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, vol. 47, pp. 1103-1120, 2022.
[48] C. M. Harrison, P. R. Slater, R. Steinberger-Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, vol. 354, pp. 115410, 2020.
[49] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, vol. 39, pp. 1014-1022, 2014.
[50] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, vol. 54, pp. 3309-3315, 2009.
[51] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, vol. 39, pp. 15754-15759, 2014.
[52] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,“Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[53] K. R. Lee, C. J. Tseng, J. K. Chang, K. W. Wang, Y. S. Huang, S. W. Lee,“Ba1−xSrxCe0.8−yZryY0.2O3−δ protonic electrolytes synthesized by hetero-composition-exchange method for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 42, pp. 22222-22227, 2017.
[54] S. Y. Lee, J. Y. Yun, W. P. Tai, “Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications”, Advanced Powder Technology, vol. 29, pp. 2423-2428, 2018.
[55] X. H. Fang, G. G. Zhu, C. G. Xia, X. Q. Liu, G. Y. Meng, “Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation”, Solid State Ionics, vol. 168, pp. 31-36, 2004.
[56] W. Zhou, Z. P. Shao, R. Ran, H. X. Gu, W. Q. Jin, N. P. Xu, “LSCF Nanopowder from Cellulose-Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, Journals of the American Ceramic Society, vol. 91, pp. 1155-1162, 2008.
[57] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,“Protonic conduction in Zr substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, (2000).
[58] A. Ayttimur, S. Koc¸yig˘it, I. Uslu, “Calcia stabilized ceria doped zirconia nanocrystalline ceramic”, Journal of Inorganic and Organometallic Polymers, vol. 24, pp. 927-932, 2014.
[59] R. H. R. Castro, “Controlling sintering and grain growth of nanoceramics”, Cerâmica, vol. 65, pp. 122-129, 2019.
[60] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells”, Journal of Power Sources, vol. 195, pp. 2747-2753, 2010.
[61] K. Xie, R. Q. Yan, X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[62] K. Huang, S. C. Singhal, “Cathode-supported tubular solid oxide fuel cell technology: A critical review”, Journal of Power Sources, vol. 237, pp.84-97, 2013.
[63] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, vol. 44, pp. 8296-8313, 2020.
[64] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt, “Preparation of Porosity–Graded SOFC Anode Substrates”, Fuel Cells, vol. 6, pp.113-116, 2006..
[65] M. O. Mavukkandy, S. A. McBride, D. M. Warsinger, N. Dizge, S. W. Hasan, H. A. Arafat, “Thin film deposition techniques for polymeric membranes– A review”, Journal of Membrane Science, vol. 610, pp. 118258, 2020.
[66] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, “Screen-printing inks for the fabrication of solid oxide fuel cell films: A review”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 426-439, 2017.
[67] B. C. Yang, J. Koo, J. W. Shin, D. Go, J. H. Shim, J. An, “Direct alcohol-fueled low-temperature solid oxide fuel cells: A review”, Energy Technology, vol. 7, pp. 5-19, 2019.
[68] M. F. Liu, R. R. Peng, D. H. Dong, J. F. Gao, X. Q. Liu, G. Y. Meng, “Direct liquid methanol-fueled solid oxide fuel cell”, Journal of Power Sources, vol. 185, pp. 188-192, 2008.
[69] H. J. Li, Y. Tian, Z. M. Wang, F. C. Qie, Y. D. Li, “An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode”, RSC Advances, vol. 2, pp. 3857-3863, 2012.
[70] B. Chen, H. Xu, P. Tan, Y. Zhang, X. Xu, W. Cai, M. Chen, M. Ni, “Thermal modelling of ethanol-fuelled solid oxide fuel cells”, Applied Energy, vol. 237, pp. 476-486, 2019.
[71] E. P. Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode”, Nature, vol. 400, pp. 649-651, 1999.
[72] J. Maček, B. Novosel, M. Marinnsek, “Ni-YSZ SOFC anodes - minimization of carbon deposition”, Journal of the European Ceramic Society, vol. 27, pp. 487-491, 2007.
[73] P. Kaparaju, I. Buendia, L. Ellegaard, I. Angelidaki, “Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-Scale and Pilot-Scale Studies,” Bioresource Technology, vol. 99, pp. 4919-4928, 2008.
[74] K. R. Lee, C. J. Tseng, S. C. Jang, J. C. Lin, K. W. Wang, J. K. Chang, T. C. Chen, S. W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy, vol. 44, pp. 23784-23792, 2019.
[75] F. Liu, C. C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol.13, pp. 4736, 2021.
[76] Z. Xie, C. R. Xia, M. Y. Zhang, W. Zhu, H. T. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, Journal of Power Sources, vol. 161, pp. 1056-1061, 2006.
[77] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, “Electrochemical performances of Ni1-xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, International Journal of Hydrogen Energy, vol. 41, pp. 13625-13631, 2016.
[78] Z. C. Wang, S. Q. Wang, S. Y. Jiao, W. J. Weng, K. Cheng, B. Qian, H. L. Yu, Y.M. Chao, A hierarchical porous microstructure for improving long-term stability of Ni1-xCux/SDC anode-supported IT-SOFCs fueled with dry methane, Journal of Alloys and Compounds, vol. 702, pp. 186-192, 2017.
[79] R. B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method”, Solid State Ionics, vol. 178, pp. 569-574, 2007.
[80] K. R. Murali, “Characteristics of sol-gel dip coated Ceria films”, Journal of Materials Science: Materials in Electronics, vol. 19, pp. 369-371, 2008.
[81] J. S. Salazar, L. Perez, O. D. Abril, L. T. Phuoc, D. Ihiawakrim, M. Vazquez, J. M. Greneche, S. B. Colin, G. Pourroy,“Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties”, Chemistry of Materials, vol. 23, pp. 1379-1386, 2011.
[82] K. R. Lee, Y. C. Chiang, I. M. Hung, C. J. Tseng, J. K. Chang, S. W. Lee, Proton-conducting Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides synthesized by sol-gel combined with composition-exchange method, Ceramics International, vol. 40, pp. 1865-1872, 2014.
[83] P. Sawant, S. Varma, B. N. Wani, S. R. Bharadwaj, “Synthesis, stability and conductivity of BaCe0.8-xZrxY0.2O3-δ as electrolyte for proton conducting SOFC”, International Journal of Hydrogen Energy, vol. 37, pp. 3848-3856, 2012.
[84] A.H. Mamaghani, B. Najafi, A. Casalegno, F. Rinaldi, “Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant”, Applied Thermal Engineering, vol. 99, pp. 1201-1211, 2016.
[85] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, Electrochemical performances of Ni1−xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, International Journal of Hydrogen Energy, vol. 41, pp. 13625-13631, 2016.
[86] K. H. Ryu, S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, vol. 125, pp. 355-367, 1999.
[87] W. J. Zheng, C. Liu, Y. Yue, W. Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides”, Materials Letters, vol. 30, pp. 93-97, 1997.
[88] J. Sui, L. Cao, Q. Zhu, L.Yu, Q. Zhang, L. Dong, “Effects of protonconducting electrolyte microstructure on the performance of electrolytesupported solid oxide fuel cells”, Journal of Renewable and Sustainable Energy, vol. 5, 2013.
[89] R. B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method”, Solid State Ionics, vol. 178, pp.569-574, 2007.
[90] W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF nanopowder from cellulose-glycine-nitrate process and its application in 55 intermediate-temperature Solid oxide fuel cells”, The American Ceramic Society, vol. 91, pp.1155-1162, 2008.
[91] S. D. Kim, J. J. Lee, H. Moon, S. H. Hyun, J. Moon, J. Kim, H. W. Lee, ”Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells”, Journal of Power Sources, vol. 169, pp. 265-270, 2007.
[92] Y. H. Bai, J. Liu, H. B. Gao, C. Jin, “Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells”, Journal of Alloys and Compounds, vol. 480, pp. 554-557, 2009.
[93] M. Morales, V. Miguel-Pérez, A. Tarancón, A. Slodczyk, M. Torrell, B. Ballesteros, J. P. Ouweltjes, J. M. Bassat, D. Montinaro, A. Morata, “Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h”, Journal of Power Sources, vol. 344, pp. 141-151, 2017.
[94] D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, “Enhancing SOFC cathode performance by surface modification through infiltration”, Energy & Environmental Science, vol. 7, pp. 552, 2014.
[95] G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalò, R. Gerbasi,“Role of synthetic route on the transport properties of BaCe1−xYxO3 proton conductor”, Journal of Alloys and Compounds, vol. 470, pp. 477-485, 2009.
[96] 賴炤銘,李錫隆,奈米材料的特殊效應與應用,台灣台北,台北化學會,2003,第585-597頁。
[97] 戴遐明,奈米陶瓷材料及其應用,北京,國防工業出版社,2005,第271-277 頁。
[98] 汪建民,朱秋龍,粉末冶金,台灣苗栗,中華民國粉末冶金協會,1991,第143-183頁。
[99] K. J. Kim, S. W. Choi, M. Y. Kim, M. S. Lee, Y. S. Kim, H. S. Kim, “Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering”, Journal of Industrial and Engineering Chemistry, vol. 42, pp. 69-74, 2016.
[100] D. Hotza, P. Greil, “Review: aqueous tape casting of ceramic powders”, Materials Science and Engineering: A, vol. 202, pp. 206-217, 1995.
[101] Z. Jiao, N. Shikazono, N. Kasagi, “Performance of an anode support solid oxide fuel cell manufactured by microwave sintering”, Journal of Power Sources, vol. 195, pp. 151-154, 2010.
[102] L. T. Yan, W. P. Sun, L. Bi, S. M. Fang, Z. T. Tao, W. Liu, “Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3−δ cermet on the hydrogen permeation performance”, Journal of Alloys and Compounds, vol. 508, pp. L5-L8, 2010.
[103] S. Primdahl, B. F. Sorensen, M. Mogensen, “Effect of nickel oxide/yttria-stabilized zirconia anode precursor sintering temperature on the properties of solid oxide fuel cells”, Journal of the American Ceramic Society, vol. 83, pp. 489-494, 2004.
[104] T. Fukui, S. Ohara, M. Naito, K. Nogi, “Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles”, Journal of Power Sources, vol. 110, pp. 91-95, 2002.
[105] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, vol. 43, pp. 2423-2446, 2018.
[106] L. Bi, E. Fabbri, E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, vol.16, pp. 37-40, 2012.
[107] E. H. Kang, H. R. Choi, J. S. Park, K. H. Kim, D. H. Kim, K. Bae, F. B. Prinz, J. H. Shim, “Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3- δ thin-film electrolytes”, Journal of Power Sources, vol. 465, pp. 228254, 2020.
[108] B. K. Park, S. A. Barnett, “Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration”, Journal of Materials Chemistry A, vol. 8, pp. 11626- 11631, 2020.
[109] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016..
[110] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, vol. 25, pp. 185705, 2014.
[111] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, vol. 131, pp. 189-198, 2000.
[112] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, vol. 52, pp. 8144-8164, 2007.
[113] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, vol. 36, pp. 7212-7228, 2011.
[114] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, vol. 258, pp. 164-181, 2014.
[115] J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, “Insights on thermal and transport features of BaCe0.8−xZrxY0.2O3−δ proton-conducting materials”, Journal of Power Sources, vol. 278, pp. 436-444, 2015.
[116] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews, vol. 39, pp. 4355, 2010.
[117] G. R. Kumar, K. Jayasankar, S. K. Das, T. Dash, A. Dash, B. K. Jena, B. K. Mishra, “Shear-force-dominated dual-drive planetary ball milling for the scalable production of graphene and its electrocatalytic application with Pd nanostructures”, RSC Advances, vol. 6, pp. 20067-20073, 2016.
[118] K. Ravichandran, P. K. Praseetha, T. Arun, S. Gobalakrishnan, Synthesis of Nanocomposites, in: S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials Advances and Key Technologies, Woodhead Publishing, United Kingdom, pp. 141-168, 2018.
[119] B. Hua, M. Li, B. Chi, L. Jian, “Enhanced electrochemical performance and carbon deposition resistance of Ni-YSZ anode of solid oxide fuel cells by in situ formed Ni-MnO layer for CH4 on-cell reforming”, Journal of Materials Chemistry A, vol. 2, pp. 1150-1158, 2014.
[120] S. C. He, H. Chen, R. F. Li, L. Ge, L. C. Guo, “Effect of Ce0.8Sm0.2O1.9 interlayer on the electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ–Ce0.8Sm0.2O1.9 composite anodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, vol. 253, pp. 187-192, 2014.
[121] X. D. Zhu, K. Sun, S. Le, N. Q. Zhang, Q. Fu, X. B. Chen, Y. X. Yuan, “Improved electrochemical performance of NiO-La0.45Ce0.55O2−δ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2−δ interlayer”, Electrochimica Acta, vol. 54, pp. 862-867, 2008.
[122] K. Singh, A. K. Baral, V. Thangadurai, “Grain boundary space charge effect and proton dynamics in chemically stable perovskite-type Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3-δ (BSCZGY): A case study on effect of sintering temperature”, Journal of the American Ceramic Society, vol. 99, pp. 866-875, 2016.
[123] G. Heras-Juaristi, D. Perez-Coll, G. C. Mather, “Effect of sintering conditions on the electrical-transport properties of the SrZrO3-based protonic ceramic electrolyser membrane”, Journal of Power Sources, vol. 331, pp. 435-444, 2016.
[124] D. H. Jeon, H. N. Jin, C. J. Kim, “Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model”, Journal of The Electrochemical Society, vol. 153, pp. A406-407, 2006.
[125] K. F. Chen, X. J. Chen, Z. Lu, N. Ai, X. Q. Huang, W. H. Su, “Performance of an anode-supported SOFC with anode functional layers”, Electrochimica Acta, vol. 53, pp. 7825-7830, 2008.
[126] A. C. Müller, D. Herbstritt, E. I. Tiffée, “Development of a multilayer anode for solid oxide fuel cells”, Solid State Ionics, vol. 152-153, pp. 537-542, 2002. |