博碩士論文 108388001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.225.54.199
姓名 鄭博駿(Po-Chun Cheng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 提升質子陶瓷燃料電池性能之研究
(Study on Performance Enhancement of Protonic Ceramic Fuel Cell (PCFC))
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-11-30以後開放)
摘要(中) 本研究第一部份旨在為甲烷燃料質子陶瓷燃料電池(PCFC)開發一種比傳統 Ni-BCZY 陽極更好的耐碳陽極。採用固相反應製程製備PCFC中Ni1-xCux-BCZY合金陽極。Ni中摻雜Cu,並在甲烷及氫氣下對陽極支撐型之單電池進行了性能曲線及電化學阻抗頻譜的量測與分析,結果得知當通入氫氣及甲烷時Ni0.9Cu0.1電池皆表現出最佳之電池性能,最高功率密度分別達到409.5 mW/cm2及177.6 mW/cm2,有此可知參雜少量的銅能夠不影響通入甲烷時之電池性能,而參雜的銅過多則使電池性能降低。這項工作證明了採用 Ni1-xCux -BCZY 合金陽極於甲烷燃料之可用性,有助於開發以甲烷做為燃料用於固體氧化物燃料電池發電之合金陽極。
本研究第二部份為了獲得緻密、高品質的電解質,質子陶瓷燃料電池(PCFC)中的質子傳導電解質BaCe0.6Zr0.2Y0.2O3 (BCZY)的燒結應在相對較高的溫度下進行。然而,在多孔陽極基底和電解質薄膜共燒結時,高燒結溫度往往會導致NiO-BCZY陽極粗化,從而減少H2氧化的電催化活性位點數量。 以及降低電池性能。提出了一種可擴展的奈米球磨製程來降低電解質燒結溫度,以維持 PCFC 陽極中的三相邊界、良好的電子和質子傳輸。透過使用奈米球磨製程,生產出的BCZY奈米粒子的直徑減少了一半以上(從 297 nm 到 131 nm)。可以降低共燒結溫度。在1400 ℃下燒結的電池表現出最高功率密度490 mW/cm2,比非奈米製程高38%。電池性能的顯著改善可歸因於較低的共燒結溫度,從而減少了 NiO 陽極的粗化。這保留了更多數量的H2電催化活性位點 電化學阻抗測量顯示電荷轉移電阻降低了 50%,證明了電池運作中 Ni 的氧化作用。
進一步將奈米粉末應用於陽極功能層,將球磨4小時之奈米粉末(135.4 nm)運用於固態氧化物燃料電池之陽極功能層,製備不同奈米AFL層分別為一層奈米AFL、二層奈米AFL及原始和奈米結合之複合AFL,其功率密度分別為286.1 mW/cm2、463.3 mW/cm2及534.1 mW/cm2,可以發現原始和奈米結合之複合AFL其電池性能有明顯提升相較於原始陽極功能層時其功率密度增加9%。進一步透過EIS分析可以看到複合AFL其活化極化RPh有明顯的下降趨勢,由於奈米AFL平均顆粒直徑減少一半,進而增加更多的三相介面導致活化極化降低。由結果得知本研究將奈米製程應用於AFL可以有效增加與電解質間的界面接觸進而降低歐姆阻抗及極化阻抗,進一步提升電池性能。
本研究第三部份提出一種能夠改善電解質多孔界面層與電解質之間接觸界面的新方法,透過共燒結多孔界面層與電解質之方法可以達到較好的接觸界面,降低電池內的界面阻抗進而實現更高的功率密度。研究結果顯示,共燒結之電解質多孔界面層電池於800 ℃下測得最大功率密度為429.3 mW/cm2,相較於預燒結之電解質多孔界面層電池(336.4 mW/cm2)其電池最大功率密度提升了17.2%,歐姆阻抗降低約30.8%。由結果得知透過共燒結多孔界面層與電解質之方法可以達到較好的接觸界面降低阻抗,進一步改善PCFC之電池性能。
摘要(英) The first part of this study aimed to develop a carbon-resistant anode for methane-fueled protonic ceramic fuel cells (PCFC) that is better than the conventional Ni-BCZY anode. The Ni1-xCux-BCZY alloy in the PCFC anode was prepared using a solid-state reaction process. Ni is doped with Cu to the anode-supported single cell′s performance curve and electrochemical impedance spectrum were measured and analyzed under methane and hydrogen. The results showed that the Ni0.9Cu0.1 cell performed best when introduced to hydrogen and methane. Regarding cell performance, the highest power density reached 409.5 mW/cm2 and 177.6 mW/cm2, respectively. Results show that doping a small amount of cobalt will not affect the cell performance when introducing methane. On the other hand, doping too much copper will reduce cell performance. This work demonstrates the usability of the Ni1-xCux-BCZY alloy anode for methane fuel, and helps to develop alloy anodes for solid oxide fuel cell power generation using methane.
The second part of this study aims to obtain a dense, high-quality electrolyte. The proton conducting electrolyte BaCe0.6Zr0.2Y0.2O3 (BCZY) sintering for the protonic ceramic fuel cell (PCFC) was carried out at a relatively high temperature. However, when the porous anode substrate and the electrolyte film are co-sintered, the high sintering temperature often leads to the coarsening of the NiO-BCZY anode, thereby reducing the number of electro-catalytic active sites for H2 oxidation and reduced cell performance. A scalable nanoball milling process is proposed to reduce the electrolyte sintering temperature to maintain a three-phase boundary and enhance electron and proton transport in PCFC anodes. Using the nanoball milling process, the BCZY nanoparticles′ diameter was reduced by more than half (from 297 nm to 131 nm). The co-sintering temperature can be lowered. The cell sintered at 1400 °C showed the highest peak power density of 490 mW/cm2, 38% higher than the non-nano-milling process. The significant improvement in cell performance can be attributed to the lower co-sintering temperature, which reduces the coarsening of the NiO anode. This preserves a more substantial number of H2 electrocatalytically active sites. Electrochemical impedance measurements show a 50% reduction in charge transfer resistance, demonstrating the oxidation of Ni in cell operation.
The nano-powder was further applied to the anode functional layer. The nano-powder (135.4 nm) was ball-milled for 4 hours and applied to the anode functional layer of the solid oxide fuel cell to prepare different nano AFL layers, including one layer of nano AFL and two layers of nano AFL. The power densities of the layered nano-AFL, the original, and nano-combined composite AFL are 286.1 mW/cm2, 463.3 mW/cm2, and 534.1 mW/cm2, respectively. It can be found that the cell performance of the original and nano-combined composite AFL has been significantly improved. Compared with the original anode functional layer, its power density increases by 9%. Further EIS analysis shows that the activation polarization RPh of composite AFL has a clear downward trend. Since the average particle diameter of nano-AFL is reduced by half, more three-phase interfaces are added, decreasing activation polarization. It is known from the results that the application of the nanometer manufacturing process to AFL in this study can effectively increase the interface contact with the electrolyte, reduce ohmic impedance and polarization resistance, and further improve cell performance.
The third part of this study proposes a new method that can improve the contact interface between the porous interface layer and the electrolyte. By co-sintering the porous interface layer and the electrolyte, a better contact interface can be achieved, and the interface impedance in the cell can be reduced. This results in higher power density. This research results show that the maximum power density of the co-sintered electrolyte porous interface layer cell measured at 800°C is 429.3 mW/cm2. Compared with the pre-sintered electrolyte porous interface layer cell (336.4 mW/cm2), the maximum power density of the cell is improved by 17.2%, and the ohmic impedance is reduced by about 30.8%. The results show that by co-sintering the porous interface layer and the electrolyte, a better contact interface can be achieved to reduce the impedance and further improve the cell performance of PCFC.
關鍵字(中) ★ 質子陶瓷燃料電池
★ 鎳銅合金
★ 甲烷
★ 奈米球磨
★ 共燒結溫度
★ 陽極粗化
★ 複合陽極功能層
★ 多孔層
關鍵字(英) ★ Protonic ceramic fuel cells
★ NiCu alloy
★ Methane
★ Nanomilling
★ Co-sintering temperature
★ Anode coarsening
★ Composite anode functional layer
★ Porous layers
論文目次 碩博士論文電子檔授權書 II
延後公開申請書 III
論文指導教授推薦書 IV
論文口試委員審定書 V
摘要 VI
Abstract VIII
致謝 XI
目錄 XII
圖目錄 XVI
表目錄 XXI
第一章、緒論 1
1-1 前言 1
1-2 燃料電池 3
1-3 固態氧化物燃料電池 4
1-3-1 P-SOFC及O-SOFC原理 4
1-4 PCFC材料之特性 6
1-4-1 PCFC陽極材料 9
1-4-2 PCFC電解質材料 11
1-4-3 PCFC陰極材料 13
1-5 粉末合成方法與燒結機制 15
1-5-1 粉末合成方法 15
1-5-2 粉末燒結理論 16
1-6 P-SOFC電池製備技術 18
1-6-1 刮刀成型技術(Tape casting methode) 18
1-6-2 乾壓成型技術(Dry pressing methode) 19
1-6-3 旋轉塗布技術(Spin coating methode) 19
1-6-4 絲網印刷技術(Screen printing methode) 20
1-7 研究目的 21
第二章、文獻回顧 23
2-1 甲烷對SOFC之影響 23
2-1-1 改變NiCu合金比例對陽極材料性質的影響 23
2-2 固態反應法製備高品質奈米粉末 25
2-2-1 低缺陷電解質層對SOFC之影響 26
2-2-2 燒結溫度對SOFC之影響 28
第三章、實驗方法 29
3-1 實驗藥品 29
3-2 實驗製程設備 30
3-3 實驗流程與方法 32
3-3-1 電解質粉末製備 32
3-3-2 陽極支撐型之基板製備 33
3-3-3 NiCu陽極粉末製備 34
3-3-4 奈米電解質漿料製備 35
3-3-5 奈米陽極功能層漿料製備 36
3-3-6 電解質多孔界面層製備 37
3-3-7 單電池製備 38
3-4 電池分析儀器 39
3-4-1 X光繞射儀(X-Ray Diffraction, XRD) 39
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40
3-4-3 導電度阻抗儀(Conductivity measurement) 41
3-4-4 雙束型聚焦離子束(Dual-beam focused ion beam, DB-FIB) 42
3-4-5 雷射粒徑分析儀(DLS Nano particle size analyzer) 43
3-4-6 燃料電池I-V性能量測與分析 43
3-4-7 電化學交流阻抗量測與分析 46
第四章、結果與討論 48
4-1 Ni1-xCux-BCZY合金陽極於甲烷燃料之電池性能 48
4-1-1 Ni1-xCux-BCZY 陽極材料分析 48
4-1-2 Ni1-xCux-BCZY合金陽極電池性能分析 49
4-1-3 Ni1-xCux-BCZY合金陽極 - 小結 54
4-2 奈米球磨製程製備奈米級粉末 55
4-2-1 奈米粉末分析 55
4-2-2 奈米薄膜 61
4-2-3 微結構分析 63
4-2-4 奈米球磨製程製備奈米級粉末 - 小結 67
4-3 奈米電解質層降低PCFC共燒結溫度 67
4-3-1 奈米電解質層 67
4-3-2 電池性能分析 69
4-3-3 PCFC陽極微結構 73
4-3-4 奈米電解質層降低PCFC共燒結溫度 - 小結 76
4-4 奈米粉末應用於陽極功能層 77
4-4-1 I-V性能曲線量測與分析 77
4-4-2 交流阻抗量測與分析 79
4-4-3 微結構分析 80
4-4-4 奈米球磨應用於陽極功能層 - 小結 81
4-5 BCZY電解質多孔界面層 82
4-5-1 材料及形貌分析 82
4-5-2 I-V性能曲線量測與分析 83
4-5-3 交流阻抗量測與分析 84
4-5-4 微結構分析 86
4-5-5 BCZY電解質多孔界面層 - 小結 87
第五章、結論與未來規劃 88
5-1 結論 88
5-2 未來規劃 91
參考文獻 92
參考文獻 [1] http://journal.bit.edu.cn/fileBJLGDXXBSKB/journal/article/bjlgdxxbshkxb/2022/2/PDF/S20220194.pdf
[2] http://eer.hbue.edu.cn/_upload/article/files/f5/e1/b448880f4ba191c31064ad2d99aa/9eb0c076-61f7-45e4-b5ff-19cfcabe497e.pdf
[3] https://www.ettoday.net/news/20211116/2125117.htm
[4] https://www.digiknow.com.tw/knowledge/6258ee0d906b1
[5] https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F
[6] https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F
[7] https://www.chinatimes.com/newspapers/20171027000388-260208?chdtv
[8] https://www.materialsnet.com.tw/industry/NewProductView.aspx?pid=1164
[9] https://www.ettoday.net/news/20180428/1159291.htm
[10] http://www.taitung.gov.tw/News_Content.aspx?n=E4FA0485B2A5071E&s=0E1D042043578E1D
[11] https://www.greentrade.org.tw/zh-hant/knowledge/%e7%b6%a0%e8%89%b2%e8%b2%bf%e6%98%93%e7%a0%94%e7%a9%b6%e9%99%a2/%e7%b6%a0%e8%89%b2%e9%9b%bb%e5%8a%9b%e6%96%b0%e5%af%b5%e5%85%92%ef%bc%8d%e7%87%83%e6%96%99%e9%9b%bb%e6%b1%a0
[12] https://toplus-e.com.tw/blog/19/81
[13] file:///C:/Users/User/Downloads/201798152754%20.pdf
[14] https://toplus-e.com.tw/blog/19/31
[15] http://www.secutech.com/15/download/Energy-saving_handbook.pdf
[16] http://140.127.113.65/et718/cfeen/L2/news_data/201009291.pdf
[17] 黃鎮江,燃料電池,台灣台中,滄海書局,2008。
[18] S. R. Narayan, T. I. Valdez, “High-energy portable fuel cell power sources”, The Electrochemical Society Interface, vol. 17, pp. 40-45, 2008.
[19] IEA, Technology Roadmap Hydrogen and Fuel Cells , 2015.
[20] F. Liu, C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol. 13, 4736, 2021.
[21] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[22] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon,“The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, vol. 158, pp. 225-232, 2003.
[23] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 51, pp. 1-8, 2015.
[24] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells - Now and future”, Materials Reports: Energy, vol. 1, pp. 100003, 2021.
[25] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, vol. 45, pp. 23988-24013, 2020.
[26] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, vol. 47, pp. 19810-19820, 2022.
[27] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, vol. 3, pp. 113-121, 2001.
[28] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid‐Oxide Fuel Cell Technology”, ChemElectroChem, vol. 3, pp. 511-530, 2016.
[29] K. Xie, R. Yan, X. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[30] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, vol. 33, pp. 2826-2833, 2008.
[31] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,” Encyclopedia of Electrochem. Power Sources, 17-24, 2009.
[32] J. Rossmeisl, W. G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, vol. 178, pp. 1694-1700, 2008.
[33] B. H. Rainwater, M. Liu, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, vol. 37, pp. 18342-18348, 2012.
[34] J. J. Haslam, A. Q. Pham, B. W. Chung, J. F. DiCarlo, R. S. Glass, “Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell”, Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005.
[35] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, vol. 141, pp. 79-95, 2005.
[36] C. Sun and U. Stimming, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007.
[37] S. McIntosh and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chemical Reviews, vol. 104, pp. 4845-4866, 2004.
[38] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones, J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, vol. 179, pp. 2155-2159, 2008.
[39] A. Arabac, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, vol. 38, pp. 6509-6515, 2012.
[40] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, vol. 9, pp. 984-1011, 2021.
[41] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, vol. 18-19, pp. 1003-1007, 1986.
[42] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, vol. 168, pp. 299-310, 2004.
[43] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, vol. 143, 1996.
[44] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants”, Electrochemical and Solid-State Letters, vol. 10, pp. B77-B80, 2007.
[45] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[46] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 156, pp. 111985, 2022.
[47] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, vol. 47, pp. 1103-1120, 2022.
[48] C. M. Harrison, P. R. Slater, R. Steinberger-Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, vol. 354, pp. 115410, 2020.
[49] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, vol. 39, pp. 1014-1022, 2014.
[50] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, vol. 54, pp. 3309-3315, 2009.
[51] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, vol. 39, pp. 15754-15759, 2014.
[52] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,“Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[53] K. R. Lee, C. J. Tseng, J. K. Chang, K. W. Wang, Y. S. Huang, S. W. Lee,“Ba1−xSrxCe0.8−yZryY0.2O3−δ protonic electrolytes synthesized by hetero-composition-exchange method for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 42, pp. 22222-22227, 2017.
[54] S. Y. Lee, J. Y. Yun, W. P. Tai, “Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications”, Advanced Powder Technology, vol. 29, pp. 2423-2428, 2018.
[55] X. H. Fang, G. G. Zhu, C. G. Xia, X. Q. Liu, G. Y. Meng, “Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation”, Solid State Ionics, vol. 168, pp. 31-36, 2004.
[56] W. Zhou, Z. P. Shao, R. Ran, H. X. Gu, W. Q. Jin, N. P. Xu, “LSCF Nanopowder from Cellulose-Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, Journals of the American Ceramic Society, vol. 91, pp. 1155-1162, 2008.
[57] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,“Protonic conduction in Zr substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, (2000).
[58] A. Ayttimur, S. Koc¸yig˘it, I. Uslu, “Calcia stabilized ceria doped zirconia nanocrystalline ceramic”, Journal of Inorganic and Organometallic Polymers, vol. 24, pp. 927-932, 2014.
[59] R. H. R. Castro, “Controlling sintering and grain growth of nanoceramics”, Cerâmica, vol. 65, pp. 122-129, 2019.
[60] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells”, Journal of Power Sources, vol. 195, pp. 2747-2753, 2010.
[61] K. Xie, R. Q. Yan, X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[62] K. Huang, S. C. Singhal, “Cathode-supported tubular solid oxide fuel cell technology: A critical review”, Journal of Power Sources, vol. 237, pp.84-97, 2013.
[63] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, vol. 44, pp. 8296-8313, 2020.
[64] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt, “Preparation of Porosity–Graded SOFC Anode Substrates”, Fuel Cells, vol. 6, pp.113-116, 2006..
[65] M. O. Mavukkandy, S. A. McBride, D. M. Warsinger, N. Dizge, S. W. Hasan, H. A. Arafat, “Thin film deposition techniques for polymeric membranes– A review”, Journal of Membrane Science, vol. 610, pp. 118258, 2020.
[66] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, “Screen-printing inks for the fabrication of solid oxide fuel cell films: A review”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 426-439, 2017.
[67] B. C. Yang, J. Koo, J. W. Shin, D. Go, J. H. Shim, J. An, “Direct alcohol-fueled low-temperature solid oxide fuel cells: A review”, Energy Technology, vol. 7, pp. 5-19, 2019.
[68] M. F. Liu, R. R. Peng, D. H. Dong, J. F. Gao, X. Q. Liu, G. Y. Meng, “Direct liquid methanol-fueled solid oxide fuel cell”, Journal of Power Sources, vol. 185, pp. 188-192, 2008.
[69] H. J. Li, Y. Tian, Z. M. Wang, F. C. Qie, Y. D. Li, “An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode”, RSC Advances, vol. 2, pp. 3857-3863, 2012.
[70] B. Chen, H. Xu, P. Tan, Y. Zhang, X. Xu, W. Cai, M. Chen, M. Ni, “Thermal modelling of ethanol-fuelled solid oxide fuel cells”, Applied Energy, vol. 237, pp. 476-486, 2019.
[71] E. P. Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode”, Nature, vol. 400, pp. 649-651, 1999.
[72] J. Maček, B. Novosel, M. Marinnsek, “Ni-YSZ SOFC anodes - minimization of carbon deposition”, Journal of the European Ceramic Society, vol. 27, pp. 487-491, 2007.
[73] P. Kaparaju, I. Buendia, L. Ellegaard, I. Angelidaki, “Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-Scale and Pilot-Scale Studies,” Bioresource Technology, vol. 99, pp. 4919-4928, 2008.
[74] K. R. Lee, C. J. Tseng, S. C. Jang, J. C. Lin, K. W. Wang, J. K. Chang, T. C. Chen, S. W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy, vol. 44, pp. 23784-23792, 2019.
[75] F. Liu, C. C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol.13, pp. 4736, 2021.
[76] Z. Xie, C. R. Xia, M. Y. Zhang, W. Zhu, H. T. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, Journal of Power Sources, vol. 161, pp. 1056-1061, 2006.
[77] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, “Electrochemical performances of Ni1-xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, International Journal of Hydrogen Energy, vol. 41, pp. 13625-13631, 2016.
[78] Z. C. Wang, S. Q. Wang, S. Y. Jiao, W. J. Weng, K. Cheng, B. Qian, H. L. Yu, Y.M. Chao, A hierarchical porous microstructure for improving long-term stability of Ni1-xCux/SDC anode-supported IT-SOFCs fueled with dry methane, Journal of Alloys and Compounds, vol. 702, pp. 186-192, 2017.
[79] R. B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method”, Solid State Ionics, vol. 178, pp. 569-574, 2007.
[80] K. R. Murali, “Characteristics of sol-gel dip coated Ceria films”, Journal of Materials Science: Materials in Electronics, vol. 19, pp. 369-371, 2008.
[81] J. S. Salazar, L. Perez, O. D. Abril, L. T. Phuoc, D. Ihiawakrim, M. Vazquez, J. M. Greneche, S. B. Colin, G. Pourroy,“Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties”, Chemistry of Materials, vol. 23, pp. 1379-1386, 2011.
[82] K. R. Lee, Y. C. Chiang, I. M. Hung, C. J. Tseng, J. K. Chang, S. W. Lee, Proton-conducting Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides synthesized by sol-gel combined with composition-exchange method, Ceramics International, vol. 40, pp. 1865-1872, 2014.
[83] P. Sawant, S. Varma, B. N. Wani, S. R. Bharadwaj, “Synthesis, stability and conductivity of BaCe0.8-xZrxY0.2O3-δ as electrolyte for proton conducting SOFC”, International Journal of Hydrogen Energy, vol. 37, pp. 3848-3856, 2012.
[84] A.H. Mamaghani, B. Najafi, A. Casalegno, F. Rinaldi, “Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant”, Applied Thermal Engineering, vol. 99, pp. 1201-1211, 2016.
[85] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, Electrochemical performances of Ni1−xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, International Journal of Hydrogen Energy, vol. 41, pp. 13625-13631, 2016.
[86] K. H. Ryu, S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, vol. 125, pp. 355-367, 1999.
[87] W. J. Zheng, C. Liu, Y. Yue, W. Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides”, Materials Letters, vol. 30, pp. 93-97, 1997.
[88] J. Sui, L. Cao, Q. Zhu, L.Yu, Q. Zhang, L. Dong, “Effects of protonconducting electrolyte microstructure on the performance of electrolytesupported solid oxide fuel cells”, Journal of Renewable and Sustainable Energy, vol. 5, 2013.
[89] R. B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method”, Solid State Ionics, vol. 178, pp.569-574, 2007.
[90] W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF nanopowder from cellulose-glycine-nitrate process and its application in 55 intermediate-temperature Solid oxide fuel cells”, The American Ceramic Society, vol. 91, pp.1155-1162, 2008.
[91] S. D. Kim, J. J. Lee, H. Moon, S. H. Hyun, J. Moon, J. Kim, H. W. Lee, ”Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells”, Journal of Power Sources, vol. 169, pp. 265-270, 2007.
[92] Y. H. Bai, J. Liu, H. B. Gao, C. Jin, “Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells”, Journal of Alloys and Compounds, vol. 480, pp. 554-557, 2009.
[93] M. Morales, V. Miguel-Pérez, A. Tarancón, A. Slodczyk, M. Torrell, B. Ballesteros, J. P. Ouweltjes, J. M. Bassat, D. Montinaro, A. Morata, “Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h”, Journal of Power Sources, vol. 344, pp. 141-151, 2017.
[94] D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, “Enhancing SOFC cathode performance by surface modification through infiltration”, Energy & Environmental Science, vol. 7, pp. 552, 2014.
[95] G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalò, R. Gerbasi,“Role of synthetic route on the transport properties of BaCe1−xYxO3 proton conductor”, Journal of Alloys and Compounds, vol. 470, pp. 477-485, 2009.
[96] 賴炤銘,李錫隆,奈米材料的特殊效應與應用,台灣台北,台北化學會,2003,第585-597頁。
[97] 戴遐明,奈米陶瓷材料及其應用,北京,國防工業出版社,2005,第271-277 頁。
[98] 汪建民,朱秋龍,粉末冶金,台灣苗栗,中華民國粉末冶金協會,1991,第143-183頁。
[99] K. J. Kim, S. W. Choi, M. Y. Kim, M. S. Lee, Y. S. Kim, H. S. Kim, “Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering”, Journal of Industrial and Engineering Chemistry, vol. 42, pp. 69-74, 2016.
[100] D. Hotza, P. Greil, “Review: aqueous tape casting of ceramic powders”, Materials Science and Engineering: A, vol. 202, pp. 206-217, 1995.
[101] Z. Jiao, N. Shikazono, N. Kasagi, “Performance of an anode support solid oxide fuel cell manufactured by microwave sintering”, Journal of Power Sources, vol. 195, pp. 151-154, 2010.
[102] L. T. Yan, W. P. Sun, L. Bi, S. M. Fang, Z. T. Tao, W. Liu, “Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3−δ cermet on the hydrogen permeation performance”, Journal of Alloys and Compounds, vol. 508, pp. L5-L8, 2010.
[103] S. Primdahl, B. F. Sorensen, M. Mogensen, “Effect of nickel oxide/yttria-stabilized zirconia anode precursor sintering temperature on the properties of solid oxide fuel cells”, Journal of the American Ceramic Society, vol. 83, pp. 489-494, 2004.
[104] T. Fukui, S. Ohara, M. Naito, K. Nogi, “Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles”, Journal of Power Sources, vol. 110, pp. 91-95, 2002.
[105] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, vol. 43, pp. 2423-2446, 2018.
[106] L. Bi, E. Fabbri, E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, vol.16, pp. 37-40, 2012.
[107] E. H. Kang, H. R. Choi, J. S. Park, K. H. Kim, D. H. Kim, K. Bae, F. B. Prinz, J. H. Shim, “Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3- δ thin-film electrolytes”, Journal of Power Sources, vol. 465, pp. 228254, 2020.
[108] B. K. Park, S. A. Barnett, “Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration”, Journal of Materials Chemistry A, vol. 8, pp. 11626- 11631, 2020.
[109] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016..
[110] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, vol. 25, pp. 185705, 2014.
[111] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, vol. 131, pp. 189-198, 2000.
[112] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, vol. 52, pp. 8144-8164, 2007.
[113] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, vol. 36, pp. 7212-7228, 2011.
[114] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, vol. 258, pp. 164-181, 2014.
[115] J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, “Insights on thermal and transport features of BaCe0.8−xZrxY0.2O3−δ proton-conducting materials”, Journal of Power Sources, vol. 278, pp. 436-444, 2015.
[116] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews, vol. 39, pp. 4355, 2010.
[117] G. R. Kumar, K. Jayasankar, S. K. Das, T. Dash, A. Dash, B. K. Jena, B. K. Mishra, “Shear-force-dominated dual-drive planetary ball milling for the scalable production of graphene and its electrocatalytic application with Pd nanostructures”, RSC Advances, vol. 6, pp. 20067-20073, 2016.
[118] K. Ravichandran, P. K. Praseetha, T. Arun, S. Gobalakrishnan, Synthesis of Nanocomposites, in: S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials Advances and Key Technologies, Woodhead Publishing, United Kingdom, pp. 141-168, 2018.
[119] B. Hua, M. Li, B. Chi, L. Jian, “Enhanced electrochemical performance and carbon deposition resistance of Ni-YSZ anode of solid oxide fuel cells by in situ formed Ni-MnO layer for CH4 on-cell reforming”, Journal of Materials Chemistry A, vol. 2, pp. 1150-1158, 2014.
[120] S. C. He, H. Chen, R. F. Li, L. Ge, L. C. Guo, “Effect of Ce0.8Sm0.2O1.9 interlayer on the electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ–Ce0.8Sm0.2O1.9 composite anodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, vol. 253, pp. 187-192, 2014.
[121] X. D. Zhu, K. Sun, S. Le, N. Q. Zhang, Q. Fu, X. B. Chen, Y. X. Yuan, “Improved electrochemical performance of NiO-La0.45Ce0.55O2−δ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2−δ interlayer”, Electrochimica Acta, vol. 54, pp. 862-867, 2008.
[122] K. Singh, A. K. Baral, V. Thangadurai, “Grain boundary space charge effect and proton dynamics in chemically stable perovskite-type Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3-δ (BSCZGY): A case study on effect of sintering temperature”, Journal of the American Ceramic Society, vol. 99, pp. 866-875, 2016.
[123] G. Heras-Juaristi, D. Perez-Coll, G. C. Mather, “Effect of sintering conditions on the electrical-transport properties of the SrZrO3-based protonic ceramic electrolyser membrane”, Journal of Power Sources, vol. 331, pp. 435-444, 2016.
[124] D. H. Jeon, H. N. Jin, C. J. Kim, “Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model”, Journal of The Electrochemical Society, vol. 153, pp. A406-407, 2006.
[125] K. F. Chen, X. J. Chen, Z. Lu, N. Ai, X. Q. Huang, W. H. Su, “Performance of an anode-supported SOFC with anode functional layers”, Electrochimica Acta, vol. 53, pp. 7825-7830, 2008.
[126] A. C. Müller, D. Herbstritt, E. I. Tiffée, “Development of a multilayer anode for solid oxide fuel cells”, Solid State Ionics, vol. 152-153, pp. 537-542, 2002.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2023-10-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明