參考文獻 |
1.Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997).Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
2.Sirringhaus, H., Kawase, T. A. K. E. O., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E. P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123-2126.
3.Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced materials, 22(6), 673-685.
4.Maleki, H., & Bertola, V. (2020). Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catalysis Science & Technology, 10(10), 3140-3159.
5.Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
6.Wang, D., Liu, S., Trummer, B. J., Deng, C., & Wang, A. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology, 20(3), 275-281.
7.De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
8.Ipekci, H. H., Gozutok, Z., Celik, N., Onses, M. S., & Uzunoglu, A. (2021). Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 164, 106038.
9.Kawase, T., Sirringhaus, H., Friend, R. H., & Shimoda, T. (2001). Inkjet printed via‐hole interconnections and resistors for all‐polymer transistor circuits. Advanced Materials, 13(21), 1601-1605.
10.Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D., & Magdassi, S. (2009). Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS nano, 3(11), 3537-3542.
11.Trantum, J. R., Wright, D. W., & Haselton, F. R. (2012). Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir, 28(4), 2187-2193.
12.Wang, F. C., & Wu, H. A. (2013). Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 9(24), 5703-5709.
13.Zhang, X., Wang, J., Bao, L., Dietrich, E., van der Veen, R. C., Peng, S., ... & Lohse, D. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
14.Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6), 1350-1353.
15.He, X., Cheng, J., Collier, C. P., Srijanto, B. R., & Briggs, D. P. (2020). Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces. Journal of colloid and interface science, 576, 127-138.
16.Majumder, M., Rendall, C. S., Eukel, J. A., Wang, J. Y., Behabtu, N., Pint, C. L., ... & Pasquali, M. (2012). Overcoming the “coffee-stain” effect by compositional Marangoni-flow-assisted drop-drying. The Journal of Physical Chemistry B, 116(22), 6536-6542.
17.Yunker, P. J., Still, T., Lohr, M. A., & Yodh, A. G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 476(7360), 308-311.
18.Bansal, L., Seth, P., Murugappan, B., & Basu, S. (2018). Suppression of coffee ring:(Particle) size matters. Applied Physics Letters, 112(21).
19.AvCarb:〈燃料電池氣體擴散層設計與功能〉,2020年5月,取自https://www.avcarb.com/wp-content/uploads/2020/06/GDL-Design-Function-Newsletter-Chinese-2.pdf
20.Park, J., & Moon, J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 22(8), 3506-3513.
21.Kim, D., Jeong, S., Park, B. K., & Moon, J. (2006). Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Applied physics letters, 89(26).
22.Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
23.Li, Y., Lv, C., Li, Z., Quéré, D., & Zheng, Q. (2015). From coffee rings to coffee eyes. Soft Matter, 11(23), 4669-4673.
24.Li, Y., Yang, Q., Li, M., & Song, Y. (2016). Rate-dependent interface capture beyond the coffee-ring effect. Scientific reports, 6(1), 24628.
25.Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
26.Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., ... & Calzolai, L. (2021). Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science, 588, 401-417.
27.Lamour, G., Hamraoui, A., Buvailo, A., Xing, Y., Keuleyan, S., Prakash, V., ... & Borguet, E. (2010). Contact angle measurements using a simplified experimental setup. Journal of chemical education, 87(12), 1403-1407.
28.Parsa, M., Harmand, S., Sefiane, K., Bigerelle, M., & Deltombe, R. (2015). Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir, 31(11), 3354-3367.
29.Lama, H., Basavaraj, M. G., & Satapathy, D. K. (2017). Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter, 13(32), 5445-5452.
30.Weon, B. M., & Je, J. H. (2013). Fingering inside the coffee ring. Physical Review E, 87(1), 013003. |