博碩士論文 107554016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.191.240.243
姓名 楊舒涵(Shu-Han Yang)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 探討數位遊戲式學習環境中不同個體差異與回饋形式對國小自然領域學習之影響
(Effects of Individual Differences and Feedback Types on Elementary School Students’ Science Learning in a DGBL Environment)
相關論文
★ Using Digital Board Game to Enhance Student Engagementin Learning★ 從人因與互動行為模式的觀點探討數位遊戲式學習輔助能源知識
★ 探討認知風格於數位遊戲式英語學習環境對遊戲行為與學習成效之影響★ 由空間能力探討遊戲式英語學習如何影響學習者之遊戲行為和遊戲表現
★ 探討先備知識及學習風格在角色扮演遊戲中對英語字彙習得成效與行為模式之影響★ 從全面性的角度探討先備知識對同儕互評中受評與 評分之影響
★ 從認知風格的角度探討同儕互評分組對遊戲製作與評量之影響★ 探討創作媒介、個別差異、範例式教學及創作模式對九年級學生音樂創作的學習動機及成效之影響
★ 探討個別差異與回饋形式在數位遊戲式學習系統中對學習動機、學習成效與遊戲表現之影響:以九年級國文學習為例★ 探討趨向表現目標與逃避表現目標對於 學習成效與表現目標採取之影響 -以數位遊戲式英語字彙為例
★ 探討英語焦慮與先備知識對英語發音學習成效、獎章成效、遊戲成效、學習動機及遊戲心流之影響──以大型多人線上角色扮演遊戲為例★ 探討認知風格及遊戲心流對英語字彙學習成效、遊戲成效與自我效能之影響—以多人線上角色扮演遊戲為例
★ 從認知風格的角度探討同儕互評對遊戲式學習系統製作與評量之影響★ 電腦輔助教師回饋於外語寫作情境之研究:成果與觀感
★ 探討英語閱讀遊戲對印尼高中英語學習者的影響★ 製作者與評量者之認知風格匹配與不匹配對遊戲人機介面與教學影片製作與評量的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過去研究發現使用具有寓教於樂的數位遊戲式學習,對於增進科學知識的理解、提高學習動機是一個有利的學習工具,然而因學習者的個體差異包含性別、先備知識等因素對數位遊戲式學習成效造成影響。此外,回饋形式設計屬於數位遊戲式學習的一項重要特徵,且以不同學習目標設計的數位遊戲式回饋成效具有其差異性。基於上述研究背景與動機,本研究除了探討不同學習環境(數位遊戲式學習、傳統紙本學習)進行自然領域學習成效之影響,進一步也探討數位遊戲式學習成效中多種變因包含性別差異、先備知識、回饋設計等對自然領域學習成效之影響。
本研究以量化結果為主,質性結果為輔,以桃園市某國小六年級共 78 名學生各三個班級為研究對象,分成不同學習環境組別,一個班級共 26 名學童作為控制組,另兩個班級各有 26 名學童作為實驗組。實驗組中再區分以不同性別(男童、女童)、不同先備知識(高先備知識、低先備知識)、不同回饋內容(詳細回饋解析、簡單回饋解析)等組別進行實驗設計。連續進行四周實驗,每周先進行課程子單元教學後,控制組採用傳統紙本學習,實驗組操作 PaGamO 系統進行學習,實驗最後隨機選取實驗組、控制組各八名學童進行半結構式訪談,隔三周後進行科學成就之延宕測驗。研究工具包含先備知識測驗、科學成就測驗、科學學習動機量表問卷、系統紀錄及訪談紀錄,其中系統紀錄包含遊戲成就(金錢、領土、等級)、答題表現(正確、錯誤、訂正、完成)作為遊戲成效表現。資料分析包含信度分析、成對樣本t 檢定、獨立樣本 t 檢定、斯皮爾曼等級相關係數分析、質性分析。主要研究發現如下:
一、無論是傳統紙本或使用數位遊戲式學習,對增進科學學習成就無顯著差異,然而實驗組在科學整體動機以及學習環境刺激這個分項動機,皆顯著高於控制組。
二、性別差異因素對使用數位遊戲式學習成效的影響,不同性別之學童皆能受惠於數位遊戲式學習成效,女童組因受惠於科學知識的理解,在難級單選題的科學成就測驗的後測表現顯著優於男童,男童則受惠於可提高內
在動機,在科學分項動機中的積極學習策略和科學學習價值等皆顯著高
於女童組,上述結果對照不同性別的遊戲成效、相關性分析、質性分析有
互為關連之處。
三、先備知識具有顯著差異的結果顯示,數位遊戲式學習對高先備知識組更為有利,其科學成就測驗等所有項目,以及科學學習動機的多數項目,皆顯著優於低先備知識組。值得一提的是數位遊戲式學習環境,仍對低先備知識組是有助益的,因能提升在科學成就測驗的進步幅度,以及增強自我效能這個分項動機。此外,對照遊戲成效、相關性分析、質性分析也有互為關連之處。
四、探討使用不同回饋解析內容,無論使用詳細解析回饋或簡單解析回饋,對增進科學學習成就、科學學習動機以及遊戲成就皆未存在顯著差異。然而,遊戲成效中在答題表現上的多數具有顯著性差異結果。詳細解析回饋組顯著優於簡單解析回饋組,因其具有完整圖文解析的內容,有助增進科學知識的理解,而簡單解析回饋組,在部分難級題目的訂正及完成表現上,則顯著優於詳細解析回饋組,因該組學童能透過較為精簡的解析重點,活用知識並完成解題,上述量化結果對照質性資料也有互為關連之處。
根據本研究發現,將科學課程匯入於數位遊戲式學習系統,對於增進學童在科學學習成效上,具有正面的助益,且透過了解在數位遊戲式學習環境中,多種變項包含性別差異、先備知識、回饋形式等,對國小學童的科學學習成就、學習動機之影響,可供後續研究及實務應用之參考。
摘要(英) Past research has found that the use of digital game-based learning with fun and
education is a beneficial learning tool for improving the understanding of scientific
knowledge and improving learning motivation. However, the individual differences of
learners, including gender, prior knowledge and other factors, affect the effectiveness of
digital game-based learning. In addition, the design of feedback type is an important
feature of digital game-based learning, and the effectiveness of digital game-based
feedback designed with different learning objectives is different. Based on the above
research background and motivation, this study not only explores the impact of different
learning environments (digital game-based learning, traditional paper-based learning) on
the effectiveness of natural domain learning. Furthermore, it also explores the effects of
various variables in digital game-based learning effects, including gender differences,
prior knowledge, and feedback design, on the effects of learning in the natural field.
This study was mainly based on quantitative results and supplemented by qualitative
results. A total of 78 students in each of three classes of a sixth-grade elementary school
in Taoyuan City were used as the research objects, divided into different learning
environment groups, and a total of 26 students in one class were used as the control group,
the other two classes each had 26 students as the experimental group. In the experimental
group, different genders (boys, girls), different prior knowledge (high prior knowledge,
low prior knowledge), different feedback content (detailed feedback analysis, simple
feedback analysis) and other groups were used for experimental design. The experiment
was carried out continuously for four weeks. After teaching the curriculum sub-units
every week, the control group used traditional paper-based learning, and the experimental
group operated the PaGamO system for learning. At the end of the experiment, eight
iv
students in the experimental group and eight students in the control group were randomly
selected to conduct semi-structured interviews. A delay test of scientific achievement was
given after three weeks. Research tools included prior-knowledge test, science
achievement test, science learning motivation scale questionnaire, system records and
interview records. The system records included game achievements (money, territory,
level) and answering performance (correct, wrong, revision, completed) as the
performance of the game. Data analysis included reliability analysis, paired sample t test,
independent sample t test, Spearman rank correlation coefficient analysis, and qualitative
analysis. The main research findings are as follows:
1. Whether it is traditional paper-based learning or digital game-based learning, there
was no significant difference in the improvement of science learning achievements,
and both produced similar learning effects. However, the overall motivation of science
and the motivation of the learning environment in the experimental group were
significantly higher than those in the control group.
2. Regarding the impact of gender differences on the effectiveness of digital game-based
learning, schoolchildren of different genders can benefit from the effectiveness of
digital game-based learning. The girls were more benefited from the understanding of
scientific knowledge because they performed significantly better than boys in the
results of the scientific achievement test of difficult multiple-choice questions in the
posttest. The boys were more benefited from improved intrinsic motivation because
their active learning strategies and science learning value in science sub-motivation
were significantly higher than girls. From the above results, there is a relationship
among the game effects of different genders, correlational analysis, and qualitative
analysis.
3. There are significant differences in the results of prior knowledge. Digital game-based
v
learning is indeed more beneficial to the group with high prior knowledge ability. All
of its science achievement tests, as well as most of the science learning motivation
tests, outperformed the low prior knowledge group significantly. It is worth
mentioning that the digital game-based learning environment is still helpful for the low
prior knowledge group, as it can improve the degree of progress in the scientific
achievement test and enhance the sub-dimension of motivation of self-efficacy. In
addition, there are also interrelationships among game achievements, correlational
analysis, and qualitative analysis.
4. Regarding the use of different feedback contents, whether using detailed feedback
contents or simple feedback contents, they all have similar effects on improving
science learning achievement, science learning motivation and game achievements.
However, most of the game outcomes had significant differences in answering
performance. On the contrary, the performance of the simple feedback contents group
is significantly better than that of the detailed feedback contents group in correcting
and completing some difficult questions, because the students in this group can make
use of the knowledge and complete the problem solving through a more streamlined
focus. As a result, the above quantitative results are also related to the qualitative data.
According to this study, the integration of science curriculum into the digital gamebased learning system has a positive effect on improving the effectiveness of science
learning among students, and by understanding the impact of various variables including
gender differences, prior knowledge, and feedback types on the science learning
achievement and learning motivation of primary school children in the digital game-based
learning environment, it can be used as a reference for subsequent research and practical
application.
關鍵字(中) ★ 數位遊戲式學習
★ 性別差異
★ 先備知識
★ 回饋形式
★ 科學學習成效
關鍵字(英) ★ Digital game-based learning
★ gender differences
★ prior knowledge
★ feedback types
★ science learning outcome
論文目次 目錄
摘  要 i
Abstract iii
誌  謝 vii
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究問題 4
1.4 名詞解釋 6
第二章 文獻探討 10
2.1 數位遊戲式學習 10
2.1.1 數位遊戲式學習之特徵及優、缺點 10
2.1.2 數位遊戲式科學學習 21
2.2 個體差異 24
2.2.1 性別差異 28
2.2.2 先備知識 31
2.3 回饋形式 34
2.3.1 回饋在教育上的應用 34
2.3.2 數位遊戲式學學習中的回饋形式 35
2.4 文獻探討總結 37
2.4.1 過去研究總結 37
2.4.2 本研究的學術定位 40
第三章 簡單機械數位遊戲式學習系統 42
3.1 PaGamO簡介 42
3.2 學習內容 42
3.3 系統架構與功能 51
3.3.1玩家角色 52
3.3.2遊戲成效表現 55
第四章 研究方法 62
4.1 研究架構與設計 62
4.1.1 自變項 64
4.1.2 依變項 64
4.1.3 控制變項 64
4.2 研究對象 65
4.3 研究工具 65
4.3.1 先備知識測驗 65
4.3.2 科學學習成就測驗 67
4.3.3 科學學習動機量表 69
4.3.4 系統紀錄檔 71
4.3.5 半結構式訪談 74
4.4 實驗流程 76
4.5 資料處理與分析 78
4.5.1 量化資料蒐集與分析 79
4.5.2 質性資料蒐集與分析 80
第五章 研究結果與討論 81
5.1 不同學習環境對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機之影響 81
5.1.1 不同學習環境組別(數位遊戲組、傳統紙本組)對於國小學童其科學學習成就之影響 81
5.1.2 不同學習環境組別(數位遊戲組、傳統紙本組)對於國小學童其科學學習動機之影響 86
5.2 在數位遊戲式學習環境中,不同性別對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之影響 90
5.2.1 在數位遊戲式學習環境中,不同性別(男童組、女童組)對於國小學童其科學學習成就之影響 90
5.2.2 在數位遊戲式學習環境中,不同性別(男童組、女童組)對於國小學童其科學學習動機之影響 94
5.2.3 在數位遊戲式學習環境中,不同性別(男童組、女童組)對於國小學童其遊戲成效之影響 99
5.3 在數位遊戲式學習環境中,不同先備知識組別對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之影響 127
5.3.1 在數位遊戲式學習環境中,不同先備知識組別(高先備知識組、低先備知識組)對於國小學童其科學學習成就之影響 127
5.3.2 在數位遊戲式學習環境中,不同先備知識組別(高先備組、低先備組)對於國小學童其科學學習動機之影響 131
5.3.3 在數位遊戲式學習環境中,不同先備知識組別(高先備組、低先備組)對於國小學童其遊戲成效之影響 136
5.4 在數位遊戲式學習環境中,不同回饋形式組別(詳細解析組、簡單解析組、)對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之影響 171
5.4.1 在數位遊戲式學習環境中,不同回饋形式組別對於國小學童其科學學習成就之影響 171
5.4.2 在數位遊戲式學習環境中,不同回饋形式組別對於國小學童其科學學習動機之影響 175
5.4.3 在數位遊戲式學習環境中,不同回饋形式對於國小學童其遊戲成效之影響 179
5.5 在數位遊戲式學習環境中,不同性別的學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之相關性 210
5.6 在數位遊戲式學習環境中,不同先備知識的學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之相關性 215
5.7 國小學童對於數位遊戲式學習應用於簡單機械課程之訪談 219
5.7.1 以「IBIS」模式分析訪談問題 219
5.7.2 訪談問題質性分析 243
5.8 綜合討論 341
5.8.1 不同學習環境組別(數位遊戲組、傳統紙本組)對於國小學童其自然領域學習中的科學學習成就、科學學習動機之影響 341
5.8.2 在數位遊戲式學習環境中,不同性別對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機及遊戲成效之影響 346
5.8.3 在數位遊戲式學習環境中,不同先備知識組別對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之影響 355
5.8.4 在數位遊戲式學習環境中,不同回饋形式組別對於國小學童其自然領域學習成效中的科學學習成就、科學學習動機及遊戲成效之影響 364
5.8.5 在數位遊戲式學習環境中,不同性別的學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之相關性 371
5.8.6 在數位遊戲式學習環境中,不同先備知識的學童其自然領域學習成效中的科學學習成就、科學學習動機、遊戲成效之相關性 375
第六章 研究結論與建議 383
6.1 研究結論 383
6.2 研究貢獻 392
6.3 研究限制與未來工作 393
參考文獻 396
附錄一:科學學習成就測驗卷 410
附錄二:科學學習動機量表 416
附錄三:系統操作使用說明 419
參考文獻 Adisusilo, A. K., & Soebandhi, S. (2021). A review of immersivity in serious game with
the purpose of learning media. International Journal of Applied Science and
Engineering, 18(5), 1-11.
Adisusilo, A. K., Wahyuningtyas, E., Saurina, N., & Radi, R. (2021, November). Serious
Game Mechanism Design for Soil Cultivation using Singkal Plow. In 2021 IEEE 5th
International Conference on Information Technology, Information Systems and
Electrical Engineering (ICITISEE) (pp. 381-386). IEEE.
Adita, A., Nugraheni, A. R. E., & Srisawasdi, N. (2020). Trends of instructional research
using biology game: A systematic review of the evidence during 2010-2019.
In Proceeding of the 28th International conference on Computers in Education (pp.
418-424).
Admiraal, W., Huizenga, J., Heemskerk, I., Kuiper, E., Volman, M., & Ten Dam, G.
(2014). Gender-inclusive game-based learning in secondary education. International
Journal of Inclusive Education, 18(11), 1208-1218.
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance
of new information technologies? Decision sciences, 30(2), 361-391.
Ahmed, W., Van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, selfregulated learning, and achievement in mathematics: A growth curve analysis.
Journal of educational psychology, 105(1), 150.
AKANI, A. (2012). Integrating entrepreneurial education into science and technology
curriculum: A strategy for poverty and unemployment reduction in Nigeria.
Department of Science Education, Ebonyi State University, Abakaliki.
Akani, O. (2012). Strategic Issues in Promoting Effective Science, Technology and
Mathematics Education for the Achievement of Millennium Development Goals
(MDGS). Journal of Resourcefulness and Distinction, 2(1), 265-273.
Akkus, R., Gunel, M., & Hand, B. (2007). Comparing an inquiry‐based approach known
as the science writing heuristic to traditional science teaching practices: Are there
differences? International Journal of Science Education, 29(14), 1745-1765.
Ali, F., Haq, I. U., Haq, K. U., Bashir, A., & Riaz, H. (2021). Comparative Study on The
Digital Game and Computer Simulation to Curtail Student’s Misconception about
Heat & Temperature. European Journal of Physics Education, 12(2), 1-10.
All, A., Castellar, E. P. N., & Van Looy, J. (2015). Towards a conceptual framework for
assessing the effectiveness of digital game-based learning. Computers & Education,
88, 29-37.
Al-Tarawneh, M. H. (2016). The effectiveness of educational games on scientific
397
concepts acquisition in first grade students in science. Journal of Education and
Practice, 7(3), 31-37.
Amro, M., VicunaPolo, S., Jayousi, R., & Qasrawi, R. (2021). Personalized Serious
Games for Improving Attention Skills among Palestinian Adolescents.
Anastasiadis, T., Lampropoulos, G., & Siakas, K. (2018). Digital game-based learning
and serious games in education. International Journal of Advances in Scientific
Research and Engineering, 4(12), 139-144.
Anderson, J., & Barnett, M. (2011). Using video games to support pre-service elementary
teachers learning of basic physics principles. Journal of Science Education and
Technology, 20(4), 347-362.
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and
assessing: A revision of Bloom′s taxonomy of educational objectives. Longman.
Angeliki, L., Rigou, M., Aliki, P., & Garofalakis, J. (2022). Effect of OSLM features and
gamification motivators on motivation in DGBL: pupils′ viewpoint. Smart Learning
Environments, 9(1).
Antonenko, P. D., Dawson, K., Cheng, L., & Wang, J. (2020). Using technology to
address individual differences in learning. In Handbook of research in educational
communications and technology (pp. 99-114). Springer.
Araujo-Junior, R., Bodzin, A., Hammond, T., Anastasio, D., Lam, B., Mack, J., ... & Slipp,
J. (2021, May). Work-in-Progress-Watershed Explorers: Designing a Virtual Reality
Game to Promote Local Watershed Literacy. In 2021 7th International Conference
of the Immersive Learning Research Network (iLRN) (pp. 1-3). IEEE.
Ardimento, P., Bernardi, M. L., & Cimitile, M. (2020). Software analytics to support
students in object-oriented programming tasks: an empirical study. IEEE Access, 8,
132171-132187.
Arifudin, D., Sulistiyaningsih, E., & Kautsar, I. A. (2020). Optimization of the Digital
Game Based Learning Instructional Design (DGBL-ID) Method as Learning Support
Media. Jurnal Mantik, 4(3), 2147-2154.
Baek, Y., & Touati, A. (2020). Comparing collaborative and cooperative gameplay for
academic and gaming achievements. Journal of Educational Computing Research,
57(8), 2110-2140.
Balci, S., Cakiroglu, J., & Tekkaya, C. (2006). Engagement, exploration, explanation,
extension, and evaluation (5E) learning cycle and conceptual change text as learning
tools. Biochemistry and Molecular Biology Education, 34(3), 199-203.
Barros, C., Carvalho, A. A., & Salgueiro, A. (2020). The effect of the serious game
Tempoly on learning arithmetic polynomial operations. Education and Information
Technologies, 25(3), 1497-1509.
Baxter, G., Hainey, T., Savorelli, A., Akhtar, U., & Ivanova, R. R. (2021, September).
398
Teaching History and Bringing the past back to life with Serious Games. In 15th
European Conference on Game Based Learning, ECGBL 2021 (pp. 99-107).
Dechema eV.
Beavis, C. (2017). Serious play: Literacy, learning and digital games. In Serious play (pp.
1-18). Routledge.
Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy of educational
objectives. In Allyn and Bacon. Pearson Education London.
Bounajim, D., Rachmatullah, A., Boulden, D., Mott, B., Lester, J., Lord, T., ... & Wiebe,
E. (2020, December). Utilizing Cognitive Load Theory and Evidence-Centered
Design to Inform the Design of Game-Based Learning Environments. In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting (Vol. 64, No. 1, pp.
826-830). Sage CA: Los Angeles, CA: SAGE Publications.
Breien, F. S., & Wasson, B. (2021). Narrative categorization in digital game‐based
learning: Engagement, motivation & learning. British Journal of Educational
Technology, 52(1), 91-111.
Bressler, D. M., Bodzin, A. M., & Tutwiler, M. S. (2019). Engaging middle school
students in scientific practice with a collaborative mobile game. Journal of Computer
Assisted Learning, 35(2), 197-207.
Brown, C. L., Comunale, M. A., Wigdahl, B., & Urdaneta-Hartmann, S. (2018). Current
climate for digital game-based learning of science in further and higher education.
FEMS Microbiology Letters, 365(21), fny237.
Calvo‐Ferrer, J. R. (2017). Educational games as stand‐alone learning tools and their
motivational effect on L 2 vocabulary acquisition and perceived learning gains.
British Journal of Educational Technology, 48(2), 264-278.
Cameron, K. E., & Bizo, L. A. (2019). Use of the game-based learning platform
KAHOOT! to facilitate learner engagement in Animal Science students. Research in
Learning Technology.
Cardinot, A., McCauley, V., & Fairfield, J. A. (2022). Designing physics board games: a
practical guide for educators. Physics Education, 57(3), 035006.
Chang, C.-C., Warden, C. A., Liang, C., & Lin, G.-Y. (2018). Effects of digital gamebased learning on achievement, flow and overall cognitive load. Australasian Journal
of Educational Technology, 34(4).
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4(1),
55-81.
Chen, B., Hwang, G.-H., & Wang, S.-H. (2021). Gender differences in cognitive load
when applying game-based learning with intelligent robots. Educational Technology
& Society, 24(3), 102-115.
Chen, C.-H. (2020). Impacts of augmented reality and a digital game on students’ science
399
learning with reflection prompts in multimedia learning. Educational Technology
Research and Development, 68(6), 3057-3076.
Chen, C.-H., Huang, K., & Liu, J.-H. (2020). Inquiry-enhanced digital game-based
learning: Effects on secondary students’ conceptual understanding in science, game
performance, and behavioral patterns. The Asia-Pacific Education Researcher, 29(4),
319-330.
Chen, C.-H., Law, V., & Huang, K. (2019). The roles of engagement and competition on
learner’s performance and motivation in game-based science learning. Educational
Technology Research and Development, 67(4), 1003-1024.
Chen, C.-H., Wang, K.-C., & Lin, Y.-H. (2015). The comparison of solitary and
collaborative modes of game-based learning on students′ science learning and
motivation. Journal of Educational Technology & Society, 18(2), 237-248.
Chen, H.-J. H., & Hsu, H.-L. (2020). The impact of a serious game on vocabulary and
content learning. Computer Assisted Language Learning, 33(7), 811-832.
Chen, M.-P., Wong, Y.-T., & Wang, L.-C. (2014). Effects of type of exploratory strategy
and prior knowledge on middle school students’ learning of chemical formulas from
a 3D role-playing game. Educational Technology Research and Development, 62(2),
163-185.
Cheng, Y.-M., Lou, S.-J., Kuo, S.-H., & Shih, R.-C. (2013). Investigating elementary
school students′ technology acceptance by applying digital game-based learning to
environmental education. Australasian Journal of Educational Technology, 29(1).
Chenoweth, T., Dowling, K. L., & Louis, R. D. S. (2004). Convincing DSS users that
complex models are worth the effort. Decision Support Systems, 37(1), 71-82.
Chung, L.-Y., & Chang, R.-C. (2017). The effect of gender on motivation and student
achievement in digital game-based learning: A case study of a contented-based
classroom. Eurasia Journal of Mathematics, Science and Technology Education,
13(6), 2309-2327.
Cronbach, L. J., & Snow, R. E. (1969). Individual Differences in Learning Ability as a
Function of Instructional Variables. Final Report.
Cunningham, L. (2018). Using Learning Analytics to Improve Digital Game-Based
Learning.
Danby, S., Fleer, M., Davidson, C., & Hatzigianni, M. (2018). Digital Childhoods:
Technologies and Children′s Everyday Lives.
Dayo, N. A., Alvi, U., & Asad, M. M. (2020, March). Mechanics of Digital Mathematics
Games for Learning of Problem-Solving: An Extensive Literature Review. In 2020
International Conference on Emerging Trends in Smart Technologies (ICETST) (pp.
1-6). IEEE.
Dorji, U., Panjaburee, P., & Srisawasdi, N. (2015). Gender differences in students’
400
learning achievements and awareness through residence energy saving game-based
inquiry playing. Journal of Computers in Education, 2(2), 227-243.
Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of instructions and
feedback on motivation and learning effectiveness. Computers & education, 67, 156-
167.
Feng, X., & Yamada, M. (2021). An analytical approach for detecting and explaining the
learning path patterns of an informal learning game. Educational Technology &
Society, 24(1), 176-190.
Fong, K., Jenson, J., & Hebert, C. (2018). Challenges with measuring learning through
digital gameplay in K-12 classrooms. Media and Communication, 6(2), 112-125.
Frasson, C. (2021, October). A Framework for Personalized Fully Immersive Virtual
Reality Learning Environments with Gamified Design in Education. In Novelties in
Intelligent Digital Systems: Proceedings of the 1st International Conference (NIDS
2021), Athens, Greece, September 30-October 1, 2021 (Vol. 338, p. 95). IOS Press.
Frøland, T. H., Heldal, I., Braseth, T. A., Nygård, I., Sjøholt, G., & Ersvæ r, E. (2022).
Digital Game-Based Support for Learning the Phlebotomy Procedure in the
Biomedical Laboratory Scientist Education. Computers, 11(5), 59.
Garris, R., Ahlers, R., & Driskell, J. E. (2017). Games, motivation, and learning: A
research and practice model. In Simulation in Aviation Training (pp. 475-501).
Routledge.
Gillispie, L., Martin, F., & Parker, M. A. (2010). Effects of a 3-D Video Game on Middle
School Student Achievement and Attitude in Mathematics. Electronic Journal of
Mathematics & Technology, 4(1).
Glaze, A. L. (2018). Teaching and learning science in the 21st century: Challenging
critical assumptions in post-secondary science. Education Sciences, 8(1), 12.
Graesser, A., Chipman, P., & Leeming, F. (2009). Deep learning and emotion in serious
games. In Serious games (pp. 105-124). Routledge.
Groening, C., & Binnewies, C. (2019). “Achievement unlocked!”-The impact of digital
achievements as a gamification element on motivation and performance. Computers
in Human Behavior, 97, 151-166.
Hébert, C., & Jenson, J. (2019). Digital game-based pedagogies: Developing teaching
strategies for game-based learning. Journal of Interactive Technology and Pedagogy,
15, 1-18.
Homer, B. D., Plass, J. L., Raffaele, C., Ober, T. M., & Ali, A. (2018). Improving high
school students′ executive functions through digital game play. Computers &
Education, 117, 50-58.
Hsiao, H.-S., Hong, J.-C., Chen, P.-H., Lu, C.-C., & Chen, S. Y. (2017). A five-stage
prediction-observation-explanation inquiry-based learning model to improve
401
students’ learning performance in science courses. Eurasia Journal of Mathematics,
Science and Technology Education, 13(7), 3393-3416.
Hsieh, Y.-H., Lin, Y.-C., & Hou, H.-T. (2015). Exploring elementary-school students′
engagement patterns in a game-based learning environment. Journal of Educational
Technology & Society, 18(2), 336-348.
Hsu, K.-C., Hsu, Y., & Olesh, R. (2017). Gamification in Science Education to Promote
Gender Equality and Learning Achievement. AERA Online Paper Repository.
Hu, Y., Gallagher, T., Wouters, P., van der Schaaf, M., & Kester, L. (2022). Game‐based
learning has good chemistry with chemistry education: A three‐level meta‐analysis.
Journal of Research in Science Teaching, 59(9), 1499-1543.
Huang, B.-G., Yang, J. C., & Chen, S. Y. (2021). An investigation of the approaches for
integrating learning materials and digital games: a prior ability perspective. Universal
Access in the Information Society, 20(1), 57-68.
Huang, W.-H. (2011). Evaluating learners’ motivational and cognitive processing in an
online game-based learning environment. Computers in Human Behavior, 27(2),
694-704.
Hughes, B., Lux, N., Frank, B., Willoughby, S., LaMeres, B., & Weyerbacher, R. (2021,
June). Minecraft Learning System for Spatial Reasoning in Middle Grades Learners.
In 2020 ASEE Virtual Annual Conference.
Hung, H.-T., Yang, J. C., Hwang, G.-J., Chu, H.-C., & Wang, C.-C. (2018). A scoping
review of research on digital game-based language learning. Computers & Education,
126, 89-104.
Hussein, M. H., Ow, S. H., Cheong, L. S., & Thong, M.-K. (2019). A Digital Game-Based
Learning Method to Improve Students’ Critical Thinking Skills in Elementary
Science. IEEE Access, 7, 96309-96318.
https://doi.org/10.1109/access.2019.2929089
Hussein, M. H., Ow, S. H., Cheong, L. S., Thong, M.-K., & Ebrahim, N. A. (2019).
Effects of digital game-based learning on elementary science learning: A systematic
review. IEEE Access, 7, 62465-62478.
Hussein, M. H., Ow, S. H., Elaish, M. M., & Jensen, E. O. (2021). Digital game-based
learning in K-12 mathematics education: a systematic literature review. Education
and Information Technologies, 1-33.
Hwang, G. J., Chien, S. Y., & Li, W. S. (2021). A multidimensional repertory grid as a
graphic organizer for implementing digital games to promote students’ learning
performances and behaviors. British Journal of Educational Technology, 52(2), 915-
933.
Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational
computer game for improving students′ learning performance in natural science
402
courses. Computers & Education, 69, 121-130.
Israel, M., Wang, S., & Marino, M. T. (2016). A multilevel analysis of diverse learners
playing life science video games: Interactions between game content, learning
disability status, reading proficiency, and gender. Journal of Research in Science
Teaching, 53(2), 324-345.
Jamil, M., Jamil, S., Urooj, A. H., & Rasheed, L. (2021). An Experiment to Investigate
the Impacts of ICT-Based-Games on Students’ Interest and Academic Achievement.
Review of Economics and Development Studies, 7(1), 119-129.
Jarrah, A. M., Almassri, H., Johnson, J. D., & Wardat, Y. (2022). Assessing the impact
of digital games-based learning on students’ performance in learning fractions using
(ABACUS) software application. EURASIA Journal of Mathematics, Science and
Technology Education, 18(10), em2159.
Jdaitawi, M. (2021). Does Flipped Learning Promote Positive Emotions in Science
Education? A Comparison between Traditional and Flipped Classroom Approaches.
Electronic Journal of e-Learning, 18(6), 516-524.
https://doi.org/10.34190/jel.18.6.004
Jhan, Y.-C., Luarn, P., & Lin, H.-W. (2022). Individual Differences in Digital GameBased Supply Chains Management Learning: Evidence from Higher Vocational
Education in Taiwan. Sustainability, 14(8), 4614.
Kalmpourtzis, G., & Romero, M. (2020). Constructive alignment of learning mechanics
and game mechanics in Serious Game design in Higher Education. International
Journal of Serious Games, 7(4), 75-88.
Kang, Y., & Ritzhaupt, A. (2021). A comparative study of game-based online learning in
music appreciation: An analysis of student motivation and achievement. Journal of
Educational Multimedia and Hypermedia, 30(1), 59-80.
Kavak, Ş. (2022). Digital Game-Based Learning Model As An Educational Approach.
Prizren Social Science Journal, 6(2), 62-70.
Kay, R. H., & Knaack, L. (2008). A formative analysis of individual differences in the
effectiveness of learning objects in secondary school. Computers & Education, 51(3),
1304-1320.
Ke, F., & M Clark, K. (2020). Game-based multimodal representations and mathematical
problem solving. International Journal of Science and Mathematics Education, 18(1),
103-122.
Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics
computer games on mathematics achievement and class motivation. Computers &
education, 55(2), 427-443.
Keller, J. M. (2008). An integrative theory of motivation, volition, and performance.
Technology, Instruction, Cognition, and Learning, 6(2), 79-104.
403
Kester, L., Kirschner, P., & Corbalan, G. (2007). Designing support to facilitate learning
in powerful electronic learning environments. Computers in Human Behavior, 23(3),
1047-1054.
Khan, A., Ahmad, F. H., & Malik, M. M. (2017). Use of digital game based learning and
gamification in secondary school science: The effect on student engagement, learning
and gender difference. Education and Information Technologies, 22(6), 2767-2804.
Khenissi, M. A., Essalmi, F., & Jemni, M. (2015). Comparison between serious games
and learning version of existing games. Procedia-Social and Behavioral Sciences,
191, 487-494.
Kunz, W., & Rittel, H. W. (1970). Issues as Elements of Information System. Working
Paper; University of California, Berkeley, 131.
Law, V., & Chen, C.-H. (2016). Promoting science learning in game-based learning with
question prompts and feedback. Computers & Education, 103, 134-143.
Lee, O., & Grapin, S. E. (2022). The role of phenomena and problems in science and
STEM education: Traditional, contemporary, and future approaches. Journal of
research in science teaching, 59(7), 1301-1309.
Lepper, M. R. (2015). Intrinsic and extrinsic motivation in children: Detrimental effects
of superfluous social controls. In Aspects of the development of competence (pp. 155-
214). Psychology Press.
Li, F.-Y., Hwang, G.-J., Chen, P.-Y., & Lin, Y.-J. (2021). Effects of a concept mappingbased two-tier test strategy on students’ digital game-based learning performances
and behavioral patterns. Computers & Education, 173, 104293.
Liao, C.-W., Chen, C.-H., & Shih, S.-J. (2019). The interactivity of video and
collaboration for learning achievement, intrinsic motivation, cognitive load, and
behavior patterns in a digital game-based learning environment. Computers &
Education, 133, 43-55.
Ling, Y., Zhu, P., & Yu, J. (2021). Which types of learners are suitable for augmented
reality? A fuzzy set analysis of learning outcomes configurations from the
perspective of individual differences. Educational Technology Research and
Development, 69(6), 2985-3008.
Liu, Y. C., Wang, W.-T., & Lee, T.-L. (2021). An integrated view of information
feedback, game quality, and autonomous motivation for evaluating game-based
learning effectiveness. Journal of Educational Computing Research, 59(1), 3-40.
Lou, A. J., & Jaeggi, S. M. (2020). Reducing the prior‐knowledge achievement gap by
using technology‐assisted guided learning in an undergraduate chemistry course.
Journal of Research in Science Teaching, 57(3), 368-392.
Lu, S.-J., Liu, Y.-C., Chen, P.-J., & Hsieh, M.-R. (2020). Evaluation of AR embedded
physical puzzle game on students’ learning achievement and motivation on
404
elementary natural science. Interactive Learning Environments, 28(4), 451-463.
Ma, X., & Wilkins, J. L. (2002). The development of science achievement in middle and
high schoolr: Individual differences and school effects. Evaluation review, 26(4),
395-417.
Malone, T. W., & Lepper, M. R. (2021). Making learning fun: A taxonomy of intrinsic
motivations for learning. In Aptitude, learning, and instruction (pp. 223-254).
Routledge.
Manesis, D. (2020). Digital games in primary education. In Game design and intelligent
interaction. IntechOpen.
Margunayasa, I. G., Dantes, N., Marhaeni, A., & Suastra, I. W. (2019). The Effect of
Guided Inquiry Learning and Cognitive Style on Science Learning Achievement.
International Journal of Instruction, 12(1), 737-750.
Markovitch, N., & Knafo‐Noam, A. (2021). Sensitivity, but to which environment?
Individual differences in sensitivity to parents and peers show domain‐specific
patterns and a negative genetic correlation. Developmental Science, 24(6), e13136.
Martin, F., Dennen, V. P., & Bonk, C. J. (2020). A synthesis of systematic review research
on emerging learning environments and technologies. Educational Technology
Research and Development, 68(4), 1613-1633.
Masantiah, C., Pasiphol, S., & Tangdhanakanond, K. (2020). Student and feedback:
Which type of feedback is preferable? Kasetsart Journal of Social Sciences, 41(2),
269–274-269–274.
Mohanty, A., Alam, A., Sarkar, R., & Chaudhury, S. (2021). Design and Development of
Digital Game-Based Learning Software for Incorporation into School Syllabus and
Curriculum Transaction. Design Engineering, 4864-4900.
Mory, E. H. (2013). Feedback research revisited. In Handbook of research on educational
communications and technology (pp. 738-776). Routledge.
Munkvold, R. I., & Sigurdardottir, H. D. I. (2018, October). Norwegian Game-Based
Learning Practices: Age, Gender, Game-Playing and DGBL. In Proceedings of the
12th European Conference on Game-Based Learning (pp. 460-468).
Obery, A., Lux, N., Cornish, J., Grimberg, B. I., & Hartshorn, A. (2021). Competitive
Games as Formative Assessment in Informal Science Learning: Improvement or
Hindrance? TechTrends, 65(4), 454-463.
Osman, K., & Lay, A. N. (2020). MyKimDG module: An interactive platform towards
development of twenty-first century skills and improvement of students’ knowledge
in chemistry. Interactive Learning Environments, 1-14.
Panskyi, T., & Rowinska, Z. (2021). A Holistic Digital Game-Based Learning Approach
to Out-of-School Primary Programming Education. Informatics in Education, 20(2),
255-276.
405
Papastergiou, M. (2009). Digital game-based learning in high school computer science
education: Impact on educational effectiveness and student motivation. Computers &
education, 52(1), 1-12.
Paris, T. N. S. T., & Kadir, M. A. (2020). Interactive and Meaningful Language Learning
using ToV. Environment-Behaviour Proceedings Journal, 5(15), 93-99.
Prensky, M. (2007). Changing paradigms. Educational Technology, 47(4), 1-3.
Proulx, J.-N., Romero, M., & Arnab, S. (2017). Learning mechanics and game mechanics
under the perspective of self-determination theory to foster motivation in digital game
based learning. Simulation & Gaming, 48(1), 81-97.
Reinders, H., & Wattana, S. (2015). Affect and willingness to communicate in digital
game-based learning. ReCALL, 27(1), 38-57.
Ren, X. (2019). Stealth Assessment Embedded in Game-Based Learning to Measure Soft
Skills: A Critical Review. Game-Based Assessment Revisited, 67-83.
Riding, R., & Grimley, M. (1999). Cognitive style, gender and learning from multi‐media
materials in 11‐year‐old children. British Journal of Educational Technology, 30(1),
43-56.
Ristanto, R. H., Kristiani, E., & Lisanti, E. (2022). Flipped classroom–digital game based
learning (FC-DGBL): Enhancing genetics conceptual understanding of students in
bilingual programme. Journal of Turkish Science Education, 19(1), 332-352.
Rizvi, S., Gauthier, A., Cukurova, M., & Mavrikis, M. (2022). Examining Gender
Differences in Game-Based Learning Through BKT Parameter Estimation.
In International Conference on Artificial Intelligence in Education (pp. 600-606).
Springer, Cham.
Rodrigues, R., da Costa Ferreira, P., Prada, R., Paulino, P., & Simao, A. M. V. (2020).
Developing Children′s Regulation of Learning in Problem-Solving With a Serious
Game. IEEE computer graphics and applications, 40(5), 26-40.
Rodríguez‐Aflecht, G., Jaakkola, T., Pongsakdi, N., Hannula‐Sormunen, M., Brezovszky,
B., & Lehtinen, E. (2018). The development of situational interest during a digital
mathematics game. Journal of Computer Assisted Learning, 34(3), 259-268.
Romero, M., & Kalmpourtzis, G. (2020). Constructive alignment in game design for
learning activities in higher education. Information, 11(3), 126.
Sáiz-Manzanares, M. C., Martin, C. F., Alonso-Martínez, L., & Almeida, L. S. (2021).
Usefulness of Digital Game-Based Learning in Nursing and Occupational Therapy
Degrees: A Comparative Study at the University of Burgos. International journal of
environmental research and public health, 18(22), 11757.
Schlatter, E., Lazonder, A. W., Molenaar, I., & Janssen, N. (2021). Individual Differences
in Children’s Scientific Reasoning. Education Sciences, 11(9), 471.
Schmeck, R. R., Ribich, F., & Ramanaiah, N. (1977). Development of a self-report
406
inventory for assessing individual differences in learning processes. Applied
psychological measurement, 1(3), 413-431.
Sedig, K. (2008). From play to thoughtful learning: A design strategy to engage children
with mathematical representations. Journal of Computers in Mathematics and
Science Teaching, 27(1), 65-101.
Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking
learning behavior analytics and learning science concepts: Designing a learning
analytics dashboard for feedback to support learning regulation. Computers in
Human Behavior, 107, 105512.
Serge, S. R., Priest, H. A., Durlach, P. J., & Johnson, C. I. (2013). The effects of static
and adaptive performance feedback in game-based training. Computers in Human
Behavior, 29(3), 1150-1158.
Singh, B. S. (2020). Physical Vs. Virtual Classroom: A Comparative Study of Teacher
Effectiveness Before and During Covid-19 Pandemic. Gyan Management, 14(1), 16-
26.
Škoda, J., Doulík, P., Bílek, M., & Šimonová, I. (2015). The effectiveness of inquiry
based science education in relation to the learners motivation types. Journal of Baltic
science education, 14(6), 791.
Snow, R. E. (1986). Individual differences and the design of educational programs.
American Psychologist, 41(10), 1029.
Solsona, N. r., Izquierdo, M., & De Jong, O. (2003). Exploring the development of
students′ conceptual profiles of chemical change. International journal of science
education, 25(1), 3-12.
Srisawasdi, N., & Panjaburee, P. (2019). Implementation of game-transformed inquirybased learning to promote the understanding of and motivation to learn chemistry.
Journal of Science Education and Technology, 28(2), 152-164.
Stanovich, K. E. (2009). Matthew effects in reading: Some consequences of individual
differences in the acquisition of literacy. Journal of education, 189(1-2), 23-55.
Stern, E. (2017). Individual differences in the learning potential of human beings. npj
Science of Learning, 2(1), 1-7.
Sternig, C., Spitzer, M., & Ebner, M. (2018). Learning in a virtual environment:
Implementation and evaluation of a VR math-game. In Virtual and Augmented
Reality: Concepts, Methodologies, Tools, and Applications (pp. 1288-1312). IGI
Global.
Stocklmayer, S. M., Rennie, L. J., & Gilbert, J. K. (2010). The roles of the formal and
informal sectors in the provision of effective science education. Studies in science
education, 46(1), 1-44.
Sugahara, S., & Cilloni, A. (2021). Mediation effect of students’ perception of accounting
407
on the relationship between game-based learning and learning approaches. Journal
of Accounting Education, 56, 100730.
Sun, C.-T., Chen, L.-X., & Chu, H.-M. (2018). Associations among scaffold presentation,
reward mechanisms and problem-solving behaviors in game play. Computers &
Education, 119, 95-111.
Sun, J. C.-Y., Yu, S.-J., & Chao, C.-H. (2019). Effects of intelligent feedback on online
learners’ engagement and cognitive load: the case of research ethics education.
Educational Psychology, 39(10), 1293-1310.
Tao, Y., & Zou, B. (2021). Students’ perceptions of the use of Kahoot! in English as a
foreign language classroom learning context. Computer Assisted Language Learning,
1-20.
Tiemann, R., & Annaggar, A. (2020). A framework for the theory-driven design of digital
learning environments (FDDLEs) using the example of problem-solving in chemistry
education. Interactive learning environments, 1-14.
Tisza, G., Zhu, S., & Markopoulos, P. (2021, November). Fun to Enhance Learning,
Motivation, Self-efficacy, and Intention to Play in DGBL. In International
Conference on Entertainment Computing (pp. 28-45). Springer, Cham.
Tsai, F.-H., Yu, K.-C., & Hsiao, H.-S. (2012). Exploring the factors influencing learning
effectiveness in digital gamebased learning. Journal of Educational Technology &
Society, 15(3), 240-250.
Tuan*, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to
measure students′ motivation towards science learning. International journal of
science education, 27(6), 639-654.
Udeozor, C., Russo Abegão, F., & Glassey, J. (2022). An evaluation of the relationship
between perceptions and performance of students in a serious game. Journal of
Educational Computing Research, 60(2), 322-351.
Udeozor, C., Toyoda, R., Russo Abegão, F., & Glassey, J. (2021). Perceptions of the use
of virtual reality games for chemical engineering education and professional training.
Higher Education Pedagogies, 6(1), 175-194.
Uluay, G., & Dogan, A. (2020). Pre-service science teachers’ learning and teaching
experiences with digital games: KODU game lab. Journal of Education in Science
Environment and Health, 6(2), 105-119.
Umbara, U., Susilana, R., & Puadi, E. F. W. (2021, March). Development of algebraic
domino games in mathematics learning based on ICT in junior high school.
In Journal of Physics: Conference Series (Vol. 1806, No. 1, p. 012076). IOP
Publishing.
Vanbecelaere, S., Cornillie, F., Sasanguie, D., Reynvoet, B., & Depaepe, F. (2021). The
effectiveness of an adaptive digital educational game for the training of early
408
numerical abilities in terms of cognitive, noncognitive and efficiency outcomes.
British Journal of Educational Technology, 52(1), 112-124.
Vanbecelaere, S., Van den Berghe, K., Cornillie, F., Sasanguie, D., Reynvoet, B., &
Depaepe, F. (2020). The effects of two digital educational games on cognitive and
non-cognitive math and reading outcomes. Computers & Education, 143, 103680.
Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher
education: a systematic literature review. International Journal of Educational
Technology in Higher Education, 14(1), 1-33.
Wahyutama, A. B., Agustin, R. D., & Hwang, M. (2021). Design of the Interactive
Educational Game using the Digital Game-based Learning Methodology. Journal of
the Korea Institute of Information and Communication Engineering, 25(10), 1337-
1344.
Wang, C.-M., Hong, J.-C., Ye, J.-H., Ye, J.-N., & Watthanapas, N. (2021). Analysis of
Gender Differences in Digital Game-Based Language Learning for Thai Language
Learning Affection, Cognition and Progress Performance. International Journal of
Social Science and Humanity, 11(4).
Wang, J., Stebbins, A., & Ferdig, R. E. (2022). Examining the effects of students′ selfefficacy and prior knowledge on learning and visual behavior in a physics game.
Computers & Education, 178, 104405.
Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference‐matching
on flow experience and programming performance in game‐based learning.
Innovations in Education and Teaching International, 47(1), 39-52.
Wang, L.-H., Chen, B., Hwang, G.-J., Guan, J.-Q., & Wang, Y.-Q. (2022). Effects of
digital game-based STEM education on students’ learning achievement: a metaanalysis. International Journal of STEM Education, 9(1), 1-13.
Wang, Z., & Cai, Y. (2021). Digital Game-Based Tools for EFL Learners in Asian
Countries.
Wardani, A. D., Gunawan, I., Kusumaningrum, D. E., Benty, D. D. N., Sumarsono, R. B.,
Nurabadi, A., & Handayani, L. (2020, November). Student learning motivation: a
conceptual paper. In 2nd Early Childhood and Primary Childhood Education (ECPE
2020) (pp. 275-278). Atlantis Press.
Wenger, M. J., & Rhoten, S. E. (2020). Perceptual learning produces perceptual objects.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 455.
Wenger, M. J., & Rhoten, S. E. (2020). Perceptual learning produces perceptual objects.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 455.
Whitton, N. J. (2007). An investigation into the potential of collaborative computer
gamebased learning in higher education (Doctoral dissertation, Edinburgh Napier
University).
409
Wilson, L. O. (2016). Anderson and Krathwohl–Bloom’s taxonomy revised.
Understanding the New Version of Bloom′s Taxonomy.
Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A
meta-analysis of the cognitive and motivational effects of serious games. Journal of
educational psychology, 105(2), 249.
Wu, C.-H. (2019). The Design of 6E Model for STEAM Game Development.
International Journal of e-Education, e-Business, e-Management and e-Learning,
9(3), 212-219.
Wu, C.-H., Tzeng, Y.-L., & Huang, Y.-M. (2020). Measuring performance in leaning
process of digital game-based learning and static E-learning. Educational Technology
Research and Development, 68(5), 2215-2237.
Yang, J. C., Chien, K. H., & Liu, T. C. (2012). A digital game-based learning system for
energy education: An energy Conservation PET. Turkish Online Journal of
Educational Technology-TOJET, 11(2), 27-37.
Yang, J. C., & Quadir, B. (2018). Effects of prior knowledge on learning performance
and anxiety in an English learning online role-playing game. Journal of Educational
Technology & Society, 21(3), 174-185.
Yang, X., Rahimi, S., Shute, V., Kuba, R., Smith, G., & Alonso-Fernández, C. (2021).
The relationship among prior knowledge, accessing learning supports, learning
outcomes, and game performance in educational games. Educational Technology
Research and Development, 69(2), 1055-1075.
Yen, J.-C., Wang, J., & Chen, I.-J. (2011). Gender differences in mobile game-based
learning to promote intrinsic motivation. Recent Researches in Computer Science,
279-284.
Yeo, J.-H., Cho, I., Hwang, G.-H., & Yang, H.-H. (2022). Impact of gender and prior
knowledge on learning performance and motivation in a digital game-based learning
biology course. Educational technology research and development, 1-20.
Yu, J., Denham, A. R., & Searight, E. (2022). A systematic review of augmented reality
game-based Learning in STEM education. Educational technology research and
development, 1-26.
Zou, D., Zhang, R., Xie, H., & Wang, F. L. (2021). Digital game-based learning of
information literacy: Effects of gameplay modes on university students’ learning
performance, motivation, self-efficacy and flow experiences. Australasian Journal of
Educational Technology, 37(2), 152-170.
指導教授 楊接期(Jie-Chi Yang) 審核日期 2023-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明