博碩士論文 110521135 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.148.106.31
姓名 陳怡璇(Yi-Hsuan Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於 n79 頻段之使用連續B類技術單端互補式金氧半導體堆疊式功率放大器暨差動緊耦合變壓器與差動緊湊型磁耦合變壓器之互補式金氧半導體堆疊式功率放大器研製
(Implementations on n79-band CMOS Single-ended Stacked Power Amplifier with Continuous Class-B Mode Techniques and Differential CMOS Stacked Power Amplifiers with Tightly Coupled Transformer and Differential CMOS Compact Stacked Power Amplifiers with Coupled Transformer)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文介紹三顆應用於第五代行動通訊之n79頻段的功率放大器,皆使用tsmcTM 0.18-m互補式金氧半導體設計堆疊式功率放大器。三顆晶片皆完成實作與量測,包含量測散射參數、大信號操作以及使用5G NR FR1調變訊號進行調變量測,並針對各晶片之量測結果進行模擬設計與量測探討。
第二章提出應用於 n79 頻段之使用連續B類技術單端堆疊式功率放大器,為了使本設計電路具有較佳的抗諧波干擾能力,於輸出匹配網路採用連續 B 類技術設計,以抑制二倍頻諧波量,並藉由所挑選電晶體之偏壓點,抑制三階項諧波所對基頻項造成的增益壓縮現象。成功使功率放大器在大信號操作下,於增益壓縮1-dB時之輸出功率與輸出飽和功率的量測結果相近,擁有良好的線性輸出功率。最大量測傳輸增益為14.15 dB,大信號量測結果顯示頻帶內飽和輸出功率為21至21.5 dBm,效率為12.1至14.45%,而增益壓縮1-dB時之輸出功率為20.27至20.86 dBm,晶片面積為2.58 mm2。調變訊號量測使用100 MHz 256QAM之訊號在輸入功率為5 dBm 的功率等級下使用DPD,改善EVM由3.15%至1.65%,ACPR從-27.61/-32.20 dBc改善至-30.06/-37.77 dBc,輸出峰值功率為21.04 dBm。
第三章首先提出應用於n79 頻段之差動緊耦合變壓器堆疊式功率放大器,透過使用磁耦合變壓器將兩個功率單元的結合,並透過差動電路結構,減少寄生輸出電容、提升輸出阻抗以利匹配至系統阻抗。於輸出匹配網路設計緊耦合變壓器,提高其傳輸效率,亦挑選抑制三階項諧波之電晶體偏壓點,以減少諧波對電路的影響。最大量測傳輸增益為15.22 dB。大信號量測結果顯示頻帶內飽和輸出功率為21.82至23.55 dBm,效率為8至10.22%,而增益壓縮1-dB時之輸出功率為14.1至20.7 dBm,晶片面積為3.79 mm2。調變訊號量測使用100 MHz 256QAM之訊號,在輸入功率為9 dBm的功率等級下使用DPD,量測結果顯示,本電路設計的抗干擾能力佳,不需要使用DPD,在不使用DPD下,於輸入功率為9 dBm 時,輸出峰值功率為22.1 dBm、EVM 為3.3%。
同時於第三章提出應用於n79 頻段之差動緊湊型變壓器堆疊式功率放大器,級間匹配網路採用中央抽頭電感,為雙端轉雙端信號的磁耦合變壓器,並針對輸出匹配網路作優化調整,採用平行耦合佈局,縮減其長度而減少損耗,進而提高Q值,以優化輸出巴倫器的傳輸效率,成功將差動耦合變壓器堆疊式功率放大器緊縮為2.57 mm2晶片面積。最大量測傳輸增益為12.3 dB。大信號量測結果顯示頻帶內飽和輸出功率為21.8至22.6 dBm,效率為8至9.8%,而增益壓縮1-dB時之輸出功率為19.8至20.7 dBm。調變訊號量測使用100 MHz 256QAM之訊號在輸入功率為6 dBm 的功率等級下使用DPD,改善EVM由4至2.7%,ACPR從-24.49/-30.88 dBc改善至-30.31/-39.2 dBc,輸出峰值功率為21.5 dBm。
摘要(英) The thesis developed three power amplifiers that were designed in tsmcTM 0.18-μm complementary metal oxide semiconductor (CMOS) processes for 5th generation communication system applications.
Chapter 2 presents an n79-band CMOS single-ended stacked power amplifier with continuous class-B mode techniques. In order to improve harmonic interference characteristics in this designed circuit, continuous class-B technique is used in the output matching network to suppress the second harmonic distortion. By selecting the bias point, the gain compression caused by the third-order harmonic is suppressed, resulting in a power amplifier that maintains linear output power when operating with large signals, with the measured output power at 1-dB gain compression point being close to the output saturation power. The maximum measured gain is 14.15 dB, and the saturated output power within the frequency band ranges from 21 dBm to 21.5 dBm, with an efficiency of 12.1% to 14.45%. The output power at 1-dB gain compression is from 20.27 dBm to 20.86 dBm. The chip area is 2.58 mm2. Modulation signal measurements were performed using a 100 MHz 256QAM signal with an input power level of 5 dBm. Digital Predistortion (DPD) was applied, improving the EVM from 3.15% to 1.65%, and the ACPR from -27.61/-32.20 dBc to -30.06/-37.77 dBc, with an output peak power of 21.04 dBm.
In Chapter 3, a differential tightly coupled transformer stacked power amplifier for the n79 frequency band is proposed. By using magnetic-coupled transformers to combine two power cells, and the output parasitic capacitance of the power cells is reduced, the output impedance is double, and the better matching to the system is achieved. A tightly coupled transformer is designed for the output matching network to improve transmission efficiency, and transistor bias points that suppress the third-order harmonic are selected to mitigate the impact of harmonics on the circuit. The maximum measured gain is 15.22 dB. The saturated output power within the frequency band ranges from 21.82 dBm to 23.55 dBm, with an efficiency of 8% to 10.22%. The output power at 1-dB gain compression is from 14.1 dBm to 20.7 dBm. The chip area is 3.79 mm2. Modulation signal measurements were performed using a 100 MHz 256QAM signal with an input power level of 9 dBm. DPD was applied, and the measurement results showed that the tightly coupled circuit has good resistance to interference in the modulation signal, eliminating the need for DPD. Without DPD, at an input power of 9 dBm, the output peak power reached 22.1 dBm with an EVM of 3.3%.
Additionally, Chapter 3 also presents a differential compact transformer-stacked power amplifier for the n79 frequency band is proposed. The inter-stage matching network uses a center-tapped inductor, which is a balnced-to-balanced magnetic-coupled transformer. The output matching network is optimized using parallel coupling layout to reduce the length of metal trace, minimize loss, and thus increase the Q factor, thereby improving the transmission efficiency of the output balun. The differential coupled transformer-stacked power amplifier is compacted to a chip area of 2.57 mm2. The maximum measured gain is 12.3 dB. The saturated output power within the frequency band ranges from 21.8 dBm to 22.6 dBm, with an efficiency of 8% to 9.8%. The output power at 1-dB gain compression is from 19.8 dBm to 20.7 dBm. Modulation signal measurements were performed using a 100 MHz 256QAM signal with an input power level of 6 dBm. DPD was applied, improving the EVM from 4% to 2%.
關鍵字(中) ★ 第五代行動通訊
★ 互補式金氧半導體
★ 連續模式技術
★ 差動電路
★ 磁耦合變壓器
★ 緊耦合變壓器
★ 緊湊電路
★ 增益拓展效應
★ 功率放大器
關鍵字(英) ★ CMOS
★ broadband
★ continuous Class-B mode
★ differential mode
★ coupled transformer
★ tightly coupled transformer
★ compact
★ gain expansion
★ power amplifier
論文目次 摘要 i
Abstract iii
目錄 viii
圖目錄 x
表目錄 xv
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 使用連續B類技術應用於n79頻段之單端堆疊式功率放大器 3
2-1 研究現況 3
2-2 諧波對功率放大器的影響 4
2-3 連續模式技術介紹 7
2-4 堆疊式架構介紹 11
2-5 使用連續B類技術應用於 n79頻段之單端堆疊式功率放大器 13
2-5-1 架構圖 13
2-5-2 電路圖 14
2-5-3 電晶體尺寸選擇 15
2-5-4 交互調變三階項設計 17
2-5-5 自偏壓堆疊式架構設計 19
2-5-6 輸出匹配網路設計 24
2-5-7 電路模擬與量測結果 32
2-5-8 結果比較與討論 45
第三章 應用n79頻段之差動磁耦合變壓器堆疊式功率放大器 49
3-1 差動放大器介紹 49
3-2 磁耦合變壓器介紹 51
3-3 應用於n79頻段之差動緊耦合變壓器堆疊式功率放大器設計 55
3-3-1 架構圖 55
3-3-2 電路圖 56
3-3-3 電晶體尺寸挑選 57
3-3-4 緊耦合輸出匹配網路設計 59
3-3-5 級間匹配網路與輸入匹配網路設計 64
3-3-6 電路模擬與量測結果 70
3-3-7 結果比較與討論 88
3-4 應用於n79 頻段之差動緊湊型磁耦合變壓器堆疊式功率放大器設計 92
3-4-1 架構圖 92
3-4-2 電路圖 93
3-4-3 緊湊型輸出匹配網路設計 94
3-4-4 級間匹配網路與輸入匹配網路設計 97
3-4-5 電路模擬與量測結果 100
3-4-6 結果比較與討論 113
第四章 結論 117
4-1 總結 117
4-2 未來方向 120
參考文獻 121
參考文獻 [1] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers, " IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[2] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[3] V. Carrubba, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," in IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 2011, pp. 1-4.
[4] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-4.
[5] V. Carrubba et al., "The continuous class-F mode power amplifier, " in Proc. Eur. Microw. Conf., Sep. 2010, pp. 1674–1677.
[6] Behzab Razavi, "RF Micrielectronics, "Second Edition.
[7] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[8] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers, " IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[9] Y. Kim and Y. Kwon, "Analysis and design of millimeter-wave power amplifier using stacked-FET structure, " IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 691-702, Feb. 2015.
[10] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network, " IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[11] S. A. Z. Murad, R. K. Pokharel, A. I. A. Galal, R. Sapawi, H. Kanaya and K. Yoshida, "An excellent gain flatness 3.0–7.0 GHz CMOS PA for UWB applications, " IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 510-512, Sept. 2010.
[12] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology, " IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[13] Y. Dong, L. Mao and S. Xie, "Fully integrated Class-J power amplifier in standard CMOS technology, " IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[14] J. -K. Nai, Y. -H. Hsiao, Y. Wang, F. Chen and H. Wang, "5-GHz transformer combined class-F−1 power amplifier, " in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016, pp. 1-3.
[15] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel and K. Yoshida, "A CMOS class-E power amplifier of 40-% PAE at 5 GHz for constant envelope modulation system, " in IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Austin, TX, USA, 2013, pp. 66-68.
[16] 3GPP. 5G NR; User Equipment (UE) radio transmission and reception; (3GPP TS 38.101-1 version 15.3.0 Release 15).
[17] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS, " IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[18] C. -H. Li, Y. -L. Liu and C. -N. Kuo, "A 0.6-V 0.33-mW 5.5-GHz Receiver Front-End Using Resonator Coupling Technique, " in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[19] S. Wong, S. Maisurah, M. N. Osman, F. Kung and J. See, "High efficiency CMOS power amplifier for 3 to 5 GHz ultra-wideband (UWB) application, " IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1546-1550, August 2009.
[20] B. Ku, S. Baek and S. Hong, "A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips, " IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1599-1609, June 2011.
[21] J. -H. Tsai, "Design of a 5.2-GHz CMOS power amplifier using TF-based 2-Stage dual-radial power splitting/combining architecture, " IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3690-3699, Oct. 2019.
[22] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS, " IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[23] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[24] 紀品瑜,「應用J類連續模式技術於Ka頻段砷化鎵與C頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國109年
[25] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國110年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明