博碩士論文 111521601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.218.6.36
姓名 費安達(Dary Rafi Brafianto)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 雙向電動車充電器應用中的直流-直流轉換器和連接電網的交流/直流轉換器帶有LCL濾波器的模型預測控制
(Model Predictive Control of DC/DC Converter and Grid-Connected AC/DC Converter with LCL Filter for Bidirectional EV Charger Application)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 雙向電動車充電器對電網提供多項優勢,包括實時功率支援,通過供應電力來滿足負載需求,在電網負載低的時候接收電力,補償電網電流中的諧波,以及減少再生能源發電的不確定性。然而,雙向充電器可能會對電網引入有害諧波,導致電力質量下降、效率降低和不穩定性增加。因此,對於雙向電動車充電器來說,有效的控制策略至關重要。本論文提出了一種有限控制集模型預測控制(MPC)用於雙向電動車充電器。該方法包括用於控制直流/直流轉換器的MPC和用於控制帶LCL濾波器的交流/直流轉換器的MPC。我們使用MATLAB/Simulink展示了在穩態性能、動態性能和魯棒性分析下的模擬結果。結果顯示,與傳統的PI控制方法相比,所提出的MPC方法可以實現良好的穩態性能、快速的瞬態響應,並且對於電網電感變化具有魯棒性。此外,通過在OPAL-RT實時模擬測試環境中進行實際測試,我們驗證了模擬結果的有效性。
摘要(英) Bidirectional EV chargers offer several benefits to the grid, including real power support, meeting load demand by supplying power, receiving power during low grid loads, compensating for harmonics in grid current, and reducing uncertainties in generating renewable energy sources. However, bidirectional chargers can introduce harmful harmonics to the grid, leading to poor power quality, decreased efficiency, and instability. Therefore, effective control strategies are essential for bidirectional EV chargers. This thesis presents a finite control set model predictive control (MPC) for bidirectional EV chargers. The proposed method consists of MPC to control DC/DC converter and MPC to control AC/DC converter with an LCL filter. The simulation results under steady-state performance, dynamic-state performance, and robustness analysis are presented using MATLAB/Simulink. The results show that the proposed MPC method can achieve good steady-state performance, fast transient response, and robustness against grid inductance changes compared with the conventional PI control method. Furthermore, the validity of the simulation results is verified through real-life experimentation in a real-time simulation testing environment with OPAL-RT.
關鍵字(中) ★ 雙向電動車充電器
★ 有限控制集模型預測控制
★ 電力質量
★ 動態響應
★ 穩態性能
★ 實時模擬
關鍵字(英) ★ Bidirectional EV charger
★ finite control set model predictive control
★ power quality
★ dynamic response
★ steady-state performance
★ real-time simulation
論文目次 Chinese Abstract ........................................................................................................................ i
English Abstract ....................................................................................................................... ii
Acknowledgements .................................................................................................................. iii
Table of Contents ...................................................................................................................... v
List of Figures ......................................................................................................................... vii
List of Tables ........................................................................................................................... ixi
Chapter 1 Introduction ............................................................................................................ 1
1.1. Background and Motivation ........................................................................................... 1
1.2. Literature Review ........................................................................................................... 3
1.3. Research Objective ......................................................................................................... 8
1.4. Methodology ................................................................................................................... 8
1.5. Brief Overview Of The Thesis ....................................................................................... 9
Chapter 2 Bidirectional Ev Charger .................................................................................... 10
2.1. Introduction ................................................................................................................... 10
2.2. Bidirectional EV Charger Configuration ...................................................................... 12
2.3. Bidirectional EV Charger Requirements ...................................................................... 13
2.4. Bidirectional EV Charger Control Method ................................................................... 15
2.4.1. PI Control For Bidirectional EV Charger ........................................................... 16
2.4.2. Model Predictive Control For Bidirectional EV Charger ................................... 18
Chapter 3 System Model And Design ................................................................................... 24
3.1. System Description ....................................................................................................... 24
3.1.1. The Bidirectional DC/DC Converter Model ....................................................... 24
3.1.2. The Bidirectional AC/DC Converter Model ....................................................... 26
3.1.3. The LCL Filter Model ........................................................................................ 28
3.2. MPC Design .................................................................................................................. 32
3.2.1. The MPC Design Of Bidirectional DC/DC Converter ....................................... 33
3.2.2. The MPC Design Of Bidirectional AC/DC Converter ....................................... 34
Chapter 4 Simulation And Results ....................................................................................... 36
4.1. The Steady-State Performance ......................................................................................... 39
4.1.1. Grid-to-Vehicle (G2V) Mode ............................................................................. 39
4.1.2. Vehicle-to-Grid (V2G) Mode ............................................................................. 47
vi
4.2. The Dynamic-State Performance ..................................................................................... 54
4.3. Robustness Analysis ........................................................................................................ 61
Chapter 5 Real-Time Simulation and Results .................................................................... 63
5.1. Introduction to Real-Time Simulation .......................................................................... 63
5.1.1. Hardware: OP4510 ............................................................................................. 64
5.1.2. Software: RT-LAB ............................................................................................. 65
5.2. System Architecture ...................................................................................................... 66
5.3. The Steady-State Performance in Real-Time Simulation ............................................. 68
5.3.1. Grid to Vehicle (G2V) Performance in Real-Time Simulation .......................... 68
5.3.2 Vehicle to Grid (V2G) Performance in Real-Time Simulation .......................... 74
5.4. The Dynamic-State Performance in Real-Time Simulation ......................................... 79
5.5. Robustness Analysis in Real-Time Simulation ............................................................ 86
Chapter 6 Conclusion And Future Work............................................................................. 88
6.1. Conclusion .................................................................................................................... 88
6.2. Future Prospects ............................................................................................................ 89
References ............................................................................................................................... 90
VITA ................................................................................................................................ 95
參考文獻 [1] International Organization of Motor Vehicle Manufacturers (OICA), 2023.
[2] International Energy Agency (IEA), 2019.
[3] International Council on Clean Transportation, “Update on Electric Vehicle Costs in the United States Through 2030”, 2019.
[4] International Energy Agency (IEA), 2020.
[5] International Energy Agency (IEA), “World Energy Outlook 2022”, 2023.
[6] U. ur Rehman and M. Riaz, “Vehicle to grid system for load and frequency management in smart grid, ” 2017 International Conference on Open Source Systems & Technologies (ICOSST), Lahore, Pakistan, 2017.
[7] X. Yan, B. Guan and X. Du, “Bidirectional Charging Strategy of Electric Vehicle based on Predictive Control Method”, 2021 International Conference on Power System Technology (POWERCON), pp. 789-793, Haikou, China, 2021.
[8] Shirazul Islam, Atif Iqbal, Mousa Marzband, Irfan Khan, Abdullah M.A.B. Al-Wahedi, “State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives”, Renewable and Sustainable Energy Reviews, Volume 166, 2022.
[9] Mohammadi F, Nazri G-A, Saif M., “A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles, ” Sustainability, 2019.
[10] Ridong Zhang, Sheng Wu, Furong Gao, “Improved PI controller based on predictive functional control for liquid level regulation in a coke fractionation tower,” Journal of Process Control,Volume 24, Issue 3, 2014.
[11] Rodriguez, J. and Cortes, P., “Predictive Control of Power Converters and Electrical Drives, ” pp. 3–39. Wiley-IEEE Press, 2012.
[12] Qu, Yanqing, “Advanced control strategies for vehicle to grid systems with electric vehicles as distributed sources,” Ph.D Dissertation, University of Technology Sydney. Faculty of Engineering and Information Technology, 2016.
[13] Ravi SS, Aziz M. “Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives”. Energies. 2022.
[14] P. Karamanakos and T. Geyer, “Guidelines for the Design of Finite Control Set Model Predictive Controllers,” in IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7434-7450, July 2020.
[15] M. Zolfaghari, R. Ahmadiahangar, G. B. Gharehpetian, A. Rosin and F. Plaum, “Using V2G Technology as Virtual Real power Filter for Flexibility Enhancement of HVDC
91
Systems,” 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 2020.
[16] H. Zahedi, G. Arab Markadeh and S. Taghipoor Boroojeni, “An improved model predictive control of an inverter with LC filter,” 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, 2017.
[17] M. Parvez, S. Mekhilef, N. M. L. Tan and H. Akagi, “Model predictive control of a bidirectional AC-DC converter for V2G and G2V applications in electric vehicle battery charger, ” 2014 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 2014. [18] T. He, M. Wu, D. D. -C. Lu, R. P. Aguilera, J. Zhang and J. Zhu, “Designed Dynamic Reference With Model Predictive Control for Bidirectional EV Chargers, ” in IEEE Access, vol. 7, pp. 129362-129375, 2019.
[19] X. Yan, B. Guan and X. Du, “Bidirectional Charging Strategy of Electric Vehicle based on Predictive Control Method”, 2021 International Conference on Power System Technology (POWERCON), pp. 789-793, Haikou, China, 2021.
[20] Tan, Kang & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Padmanaban, Sanjeevikumar & MIHET-POPA, Lucian & Blaabjerg, F., “Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling”, 2017.
[21] F. M. Shakeel and O. P. Malik, “Vehicle-To-Grid Technology in a Micro-grid Using DC Fast Charging Architecture,” 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019. [22] Ravi SS, Aziz M. “Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives”, 2022.
[23] Latifi, Mohammadshayan & Sabzehgar, Reza & Rasouli, Mohammad, “Reactive Power Compensation Using Plugged-In Electric Vehicles for an AC Power Grid”, 2018.
[24] M. Zolfaghari, R. Ahmadiahangar, G. B. Gharehpetian, A. Rosin and F. Plaum, “Using V2G Technology as Virtual Real power Filter for Flexibility Enhancement of HVDC Systems,” 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 2020.
92
[25] Rwamurangwa E, Gonzalez JD, Butare A., “Integration of EV in the Grid Management: The Grid Behavior in Case of Simultaneous EV Charging-Discharging with the PV Solar Energy Injection,” Electricity, 2022 .
[26] S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh and S. Saha, “A Solar PV Based Smart EV Charging System with V2G Operation for Grid Support,” 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 2021.
[27] Vidyanandan, K.V., “Overview of Electric and Hybrid Vehicles”. Energy Scan (A House Journal of Corporate Planning, NTPC Ltd., India). III. 7-14, 2018.
[28] Al-Hanahi, Bassam & Ahmad, Iftekhar & Habibi, Daryoush & Masoum, Mohammad, “Charging Infrastructure for Commercial Electric Vehicles: Challenges and Future Works”, 2021.
[29] Norwegian Elctrotechnical Publication, “Electric Vehicle Conductive Charging System Part 1: General Requirements”, 2017.
[30] Bart Basile, “Design considerations for a 10-kW 3-phase, 3-level bi-directional AC/DC, DC/AC inverter/rectifier,” TI Training, Jun. 26, 2019.
[31] S. Chakraborty, M. G. Simões, and W. E. Kramer, Eds., “Power electronics for renewable and distributed energy systems: a sourcebook of topologies, control and integration”, London: Springer, 2013.
[32] M. Parvez, S. Mekhilef, N. M. L. Tan and H. Akagi, “Model predictive control of a bidirectional AC-DC converter for V2G and G2V applications in electric vehicle battery charger,” 2014 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 2014.
[33] A. Verma and B. Singh, “Three phase off-board bi-directional charger for EV with V2G functionality,” 2017 7th International Conference on Power Systems (ICPS), Pune, India, 2017.
[34] J. Yuan, L. Dorn-Gomba, A. D. Callegaro, J. Reimers and A. Emadi, “A Review of Bidirectional On-Board Chargers for Electric Vehicles”, 2021.
[35] L. Wang, Z. Qin, T. Slangen, P. Bauer and T. van Wijk, “Grid Impact of Electric Vehicle Fast Charging Stations: Trends, Standards, Issues and Mitigation Measures - An Overview, ” in IEEE Open Journal of Power Electronics, vol. 2, pp. 56-74, 2021.
93
[36] Maccari, L.A., Montagner, V.F. and Lima, D.M.,“Model predictive current controller applied to grid-connected LCL-filters,” In: 2016 12th IEEE International Conference on Industry Applications (INDUSCON), pp. 1–6. Nov 2016.
[37] Yoo, D.K., Wang, L., Rogers, E. and Paszke, W.: “Model predictive control of three phase voltage source converters with an LCL-filter,” In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 562–567. June 2014.
[38] Scoltock, J., Geyer, T. and Madawala, U.: “Model Predictive Direct Power Control for a grid-connected converter with an LCL-filter,” In: Industrial Technology (ICIT), 2013 IEEE International Conference on, pp. 588–593. Feb 2013.
[39] P. Falkowski and A. Sikorski, “Finite Control Set Model Predictive Control for Grid-Connected AC–DC Converters With LCL Filter,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 2844-2852, April 2018.
[40] Pena-Alzola, R., Liserre, M., Blaabjerg, F., Sebastián, R., Dannehl, J. and Fuchs, F.W.: “Analysis of the passive damping losses in LCL-filter-based grid converters,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2642–2646, 2013.
[41] Mojumder MRH, Ahmed Antara F, Hasanuzzaman M, Alamri B, Alsharef M. “Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery,” Sustainability, 2022.
[42] Rodriguez, J. and Cortes, P.: “Predictive Control of Power Converters and Electrical Drives,” pp. 3–39. Wiley-IEEE Press, 2012.
[43] L. Guo, Z. Xu, N. Jin, Y. Chen, Y. Li and Z. Dou, “An Inductance Online Identification Method for Model Predictive Control of V2G Inverter With Enhanced Robustness to Grid Frequency Deviation,” in IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 1575-1589, June 2022.
[44] X. Shi, J. Zhu, L. Li and Y. Qu, “Model predictive control of PWM AC/DC converters for Bi-directional power flow control in microgrids, ” 2015 Australasian Universities Power Engineering Conference (AUPEC), Wollongong, NSW, Australia, 2015.
[45] Cortes, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E. and Rodriguez, J.: “Predictive control in power electronics and drives. IEEE Transactions on Industrial Electronics, ” vol. 55, no. 12, pp. 4312–4324, Dec 2008.
[46] Y. Shan, J. Hu, K. W. Chan, Q. Fu and J. M. Guerrero, “Model Predictive Control of Bidirectional DC–DC Converters and AC/DC Interlinking Converters—A New
94
Control Method for PV-Wind-Battery Microgrids,” in IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 1823-1833, Oct. 2019.
[47] H. Wang, Q. Huang and Z. S. Li, “A Dynamic Bayesian Network Control Strategy for Modeling Grid-Connected Inverter Stability,” in IEEE Transactions on Reliability, vol. 71, no. 1, pp. 75-86, March 2022.
[48] S. Vazquez et al., “Model Predictive Control: A Review of Its Applications in Power Electronics,” in IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp. 16-31, March 2014.
[49] S. Kouro, P. Cortes, R. Vargas, U. Ammann and J. Rodriguez, “Model Predictive Control—A Simple and Powerful Method to Control Power Converters,” in IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, June 2009.
[50] C. Flack, E. Ucer, C. P. Smith and M. Kisacikoglu, “Controller Hardware-in-the-loop (C-HIL) Testing of Decentralized EV-Grid Integration,” 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022.
[51] Cao, C, Wang, L, Chen, B, Harper, J, Bohn, T, Dobrzynski, D, & Hardy, K. “Real-Time Modeling to Enable Hardware-in-the-Loop Simulation of Plug-In Electric Vehicle-Grid Interaction,” Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 9: 13th ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications. Cleveland, Ohio, USA. August 6–9, 2017.
[52] Opal RT Technologies Inc., OP4510 User Manual.
[53] Mikkili, Suresh and Panda, Anup Kumar. “Review of RT-LAB and Steps Involved for Implementation of a Simulink Model from MATLAB to REAL-TIME,” International Journal of Emerging Electric Power Systems, vol. 14, no. 6, 2013.
指導教授 陳正一 Ir. Wijono, M.T., Ph.D. Dr. Tri Nurwati, ST., MT.(Cheng-I Chen Ir. Wijono, M.T., Ph.D. Dr. Tri Nurwati, ST., MT.) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明