博碩士論文 110521062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.143.254.224
姓名 陳韋翰(Wei-Han Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P 型鎂矽錫熱電材料之製程開發及模組製作
(Process Development of P-type Mg2(SiSn) Thermoelectric Materials and Modules)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前,化石燃煤是主要的發電能源,但其使用導致了能源供應受限和環境問題,包括能源短缺和氣候變暖等。為了解決這些問題,人們開始關注並發展再生能源作為替代方案。
在眾多的再生能源中,熱電發電技術受到廣泛關注。這種技術利用熱電材料將周圍環境的廢熱轉換為電能。熱電材料根據Seebeck效應,當兩側溫度存在差異時,會產生電位差,進而產生電流。這樣就實現了熱能和電能之間的相互轉換。
儘管熱電材料的轉換效率仍然存在挑戰,但它作為一種綠色能源具有巨大的發展潛力。研究人員在熱電材料的開發方面進行持續努力,包括新材料的合成和結構設計,以提高轉換效率。這將有助於推動熱電發電技術的應用,減少對化石燃料的依賴,並實現更可持續的能源供應。
本論文主要以P型Mg2¬(SiSn)熱電材料作為研究,嘗試找出合適的金屬接觸,並對試片進行量測與分析,最後測試模組的輸出特性。其中測試出具有最佳特性的試片是MgSnAg0.02+25 at% Mg+24 at% Mg2Si+Al箔片。該試片具有最大的席貝克係數約為366μV/K,最小室溫電阻在16.9756mΩ。
接著,使用銀漿作為銲料,鎳片作為橋接的金屬,對具有最佳參數的N型和P型試片進行熱電性能量測。最大輸出功率為 174.45μW。
摘要(英) Currently, fossil coal is the primary source of electricity generation, but its usage has resulted in limited energy supply and environmental issues, including energy shortages and climate change. To address these problems, there is a growing emphasis on developing renewable energy as an alternative solution.
Among the various forms of renewable energy, thermoelectric power generation technology has garnered significant attention. This technology employs thermoelectric materials to convert waste heat from the surrounding environment into electricity. According to the Seebeck effect, thermoelectric materials generate a potential difference and subsequently produce an electric current when there is a temperature difference between the two sides. This enables the conversion between thermal energy and electrical energy.
While the conversion efficiency of thermoelectric materials still poses challenges, it holds immense potential as a green energy source. Researchers are continually making efforts to develop thermoelectric materials, including synthesizing new materials and improving structural design, with the aim of enhancing conversion efficiency. These advancements will contribute to the progress of thermoelectric power generation technology, reduce dependence on fossil fuels, and promote a more sustainable energy supply.
This paper primarily focuses on the research of P-type Mg2(SiSn) thermoelectric materials. The objective is to identify suitable metal contacts, conduct measurements and analysis on the samples, and ultimately test the output characteristics of the module. Among the tested samples, the one exhibiting optimal characteristics is Mg2SnAg0.02+25 at% Mg+24 at% Mg2Si+Al foil. This particular sample demonstrates a maximum Seebeck coefficient of approximately 366μV/K and a minimum room temperature resistance of 16.9756mΩ.
Subsequently, silver paste is utilized as a solder, and nickel plates are employed as bridging metals to measure the thermoelectric performance of the p-type and n-type samples with the optimal parameters. The maximum achieved output power is 174.45μW.
Overall, this research showcases the potential of thermoelectric materials in energy generation and emphasizes the ongoing efforts to improve their efficiency. The findings contribute to the development of sustainable and environmentally friendly energy sources while reducing our reliance on fossil fuels.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電轉換效應
★ 熱電優質
★ Seebeck effect
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
一、緒論 1
1-1 前言 1
1-2 研究動機 3
二、熱電原理與參考文獻 6
2-1 熱電效應 6
2-1-1 Seebeck effect 6
2-1-2 Peltier effect 7
2-1-3 Thomson effect 7
2-2 熱電優質 8
2-3 熱電模組 11
2-4 熱電材料應用 13
2-4-1 熱電發電 13
2-4-2 熱電製冷 13
2-5 文獻回顧 14
2-5-1 Mg2(SiSn)晶體結構 14
2-5-2 P-type Ag參雜之Mg2Sn 15
2-5-3 鋁作為Mg(Si,Sn)之接面金屬 19
三、量測儀器 21
3-1 熱電特性量測 21
3-1-1 電導率量測 21
3-1-2 Seebeck coefficient量測 24
3-1-3 熱擴散量測 25
3-1-4 比熱量測 26
3-1-5 密度量測 27
3-1-6 熱導率量測 28
3-2 材料分析 29
3-2-1 掃描式電子顯微鏡 29
3-2-2 X光繞射儀 30
3-3 元件量測 31
四、實驗方法與步驟 33
4-1 前言 33
4-2 實驗流程 34
4-3 P型矽粉製程方式 35
4-4 鎂矽製程方式 38
4-5 鎂矽錫之金屬接觸製程方式 41
4-6 元件製作方式 44
4-7 模組製作方式 47
五、實驗結果與討論 50
5-1 Mg2Si的參數測試 50
5-2 鎂矽錫之金屬接觸 54
5-2-1 低鎂矽之金屬接觸 56
5-2-2 高鎂矽之金屬接觸 59
5-3 模組橋接測試 61
5-3-1 銀漿接合 61
5-3-2 點銲接合 63
5-4 大型模組輸出電性的分析 65
六、結論與未來展望 71
參考文獻 72
參考文獻 [1] 曾昱瑋, 陳巧菱, 王俊仁, 蔣佳君, 賴緯哲, and 陳建志, "核能, 何能," 2015.
[2] 鄭柔馨, 楊善雅, 黎念祖, and 卓婉婷, "全球氣候變遷與經濟發展之影響-以台灣經濟政策發展為例," 2020.
[3] 劉珮珊, "臺灣地區結合風能發電與太陽能發電之可行性評估," 2007.
[4] 型Bi2TeN, "國立中山大學電機工程學系碩士論文," 2011.
[5] B.-Y. S. Yu-Li Lin, Tien-Yuan Li, Kuang-Yao Chen, "小型熱電發電系統之應用."
[6] 周欢欢, 檀柏梅, 张建新, 牛新环, 王如, and 潘国峰, "Bi_2Te_3 热电材料研究现状," 半导体技术, vol. 36, no. 10, pp. 765-770, 2011.
[7] Z. Guo-Hui, W. Huai-Qiang, and Z. Hai-Jun, "Antiferromagnetic topological insulators and axion insulators——MnBi 2 Te 4 family magnetic systems," Physics, vol. 49, no. 12, pp. 817-827, 2020.
[8] "中華民國 105 年能源統計手冊."
[9] R. R. Heikes and R. W. Ure, Thermoelectricity. Science and engineering. [By] R.R. Heikes and R.W. Ure, Jr. ... With the collaboration of Stephen J. Angello [and others], etc. Interscience Publishers: New York, London (in eng), 1961.
[10] 許家展, 黃振東, and 鍾秀瑩, "中溫熱電材料研究與發展," 工業材料雜誌, no. 286, 10/28 2010. [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=8923.
[11] 黃子耘, "錫摻雜矽化鎂熱電材料之固相合成與分析," 碩士, 材料科學與工程學系所, 國立交通大學, 2015. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GT070251551%22.
[12] 洪源鍵, "尺寸效應和界面熱阻對熱電致冷器性能之影響," 碩士, 國立交通大學, 臺灣博碩士論文知識加值系統, 2004. [Online]. Available: https://hdl.handle.net/11296/eurxa4
[13] H. Adachi, K.-i. Uchida, E. Saitoh, and S. Maekawa, "Theory of the spin Seebeck effect," Reports on Progress in Physics, vol. 76, no. 3, p. 036501, 2013.
[14] 陳洋元 and 陳正龍. "熱電於再生能源之運用." https://pb.ps-taiwan.org/modules/news/article.php?storyid=59 (accessed.
[15] D. C. Spanner, "The Peltier effect and its use in the measurement of suction pressure," Journal of Experimental Botany, pp. 145-168, 1951.
[16] 维基百科编者, "汤姆森效应," in 维基百科,自由的百科全書, ed.
[17] M. Thakkar, A report on "Peltier (thermoelectric) cooling module". 2016.
[18] D. Nemir and J. Beck, "On the significance of the thermoelectric figure of merit Z," Journal of electronic materials, vol. 39, pp. 1897-1901, 2010.
[19] L. Yang, Z. G. Chen, M. S. Dargusch, and J. Zou, "High performance thermoelectric materials: progress and their applications," Advanced Energy Materials, vol. 8, no. 6, p. 1701797, 2018.
[20] 陳信文, 吳欣潔, and 張睿紳, "熱電材料與熱電模組," 化工, vol. 63, no. 5, pp. 75-92, 2016.
[21] 朱旭山, "熱電材料與元件之原理與應用," ed: 電子與材料雜誌, 2004.
[22] 陳信文, 吳欣潔, and 顏婉婷. "優化熱電材料的方法揭密!熱電元件解說大全." https://www.matek.com/zh-TW/Tech_Article/detail/latest/all/202212-IAR (accessed.
[23] M. H. Elsheikh et al., "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and sustainable energy reviews, vol. 30, pp. 337-355, 2014.
[24] F. J. DiSalvo, "Thermoelectric cooling and power generation," Science, vol. 285, no. 5428, pp. 703-706, 1999.
[25] X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity," Journal of Materiomics, vol. 1, no. 2, pp. 92-105, 2015/06/01/ 2015, doi: https://doi.org/10.1016/j.jmat.2015.01.001.
[26] N. Farahi, C. Stiewe, D. Y. N. Truong, J. de Boor, and E. Müller, "High efficiency Mg2(Si,Sn)-based thermoelectric materials: scale-up synthesis, functional homogeneity, and thermal stability," RSC Advances, 10.1039/C9RA04800F vol. 9, no. 40, pp. 23021-23028, 2019, doi: 10.1039/C9RA04800F.
[27] P. Gao, Mg 2 (Si, Sn)-based thermoelectric materials and devices. Michigan State University, 2016.
[28] R. Demchyna, S. Leoni, H. Rosner, and U. Schwarz, "High-pressure crystal chemistry of binary intermetallic compounds," Zeitschrift für Kristallographie - Crystalline Materials, vol. 221, no. 5-7, pp. 420-434, 2006, doi: doi:10.1524/zkri.2006.221.5-7.420.
[29] R. Song, T. Aizawa, and J. Sun, "Synthesis of Mg2Si1− xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007.
[30] J. Camut et al., "Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices," Materials Today Energy, vol. 21, p. 100718, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.mtener.2021.100718.
[31] J. Li, Y. Wang, and D. Ba, "Characterization of semiconductor surface conductivity by using microscopic four-point probe technique," Physics Procedia, vol. 32, pp. 347-355, 2012.
[32] S. Min, J. Blumm, and A. Lindemann, "A new laser flash system for measurement of the thermophysical properties," Thermochimica Acta, vol. 455, no. 1-2, pp. 46-49, 2007.
[33] A.-H. Mourad, R. O. Akkad, A. Soliman, and T. Madkour, "Characterisation of thermally treated and untreated polyethylene–polypropylene blends using DSC, TGA and IR techniques," Plastics, rubber and composites, vol. 38, no. 7, pp. 265-278, 2009.
[34] M. Combrzyński, A. Wójtowicz, T. Oniszczuk, L. Mościcki, and Ö. Özmen, "Selected Physical Properties of Extruded Foamed Materials Based on Starch," 2017.
[35] L. Raspolini, "電子顯微鏡:揭開肉眼看不見的世界," 科學月刊, no. 628, 04/01 2022. [Online]. Available: https://www.scimonth.com.tw/archives/5643.
[36] NARLabs. "利用X-ray 看透材料原子排列結構世界." https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604 (accessed.
[37] 维基百科编者, "戴维南定理," in 维基百科,自由的百科全書, ed.
[38] 维基百科编者, "諾頓定理," in 维基百科,自由的百科全書, ed.
[39] 邱思萍, "P型鎂矽錫熱電材料之製程開發及元件製作," 碩士, 電機工程學系, 國立中央大學, 2021. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC109521048%22.
[40] "Mg-Si phase digram," [Online]. Available: http://www.factsage.cn/fact/phase_diagram.php?file=Mg-Si.jpg&dir=FSlite
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明