博碩士論文 110522040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.145.79.65
姓名 鄭馥緯(Fu-Wei Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在非球型擾動下的低軌衛星路由網路設計
(LEO satellite network routing algorithm in non-spherical earth)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
★ 衛星上可重組化計算之安全FPGA動態部分可重組架構★ 衛星網路之基於空間多樣性的前導訊號設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 衛星通訊最近變得流行,因為它可以為地球上的任何位置提供服務,不受地理限制。儘管具有優勢,低地球軌道衛星網絡仍面臨不可預測的鏈路故障和頻繁的拓撲變化。地球的扁率使得衛星繞赤道和星座邊界運行時高度會發生變化,而由於衛星之間的距離較遠,指向精度是衛星間通訊的關鍵問題。然而,相鄰衛星相對位置的變化會降低指向精度。通過衛星的周期性變化,本文提出了星間鏈路質量估計模型和基於鏈路質量的路由算法。此外,我們還考慮了衛星和地面站切換帶來的延遲問題。為了解決這個問題,我們提出了一種數據包轉發機制來避免數據包丟失。最終的實驗結果還表明,我們的方法犧牲了一點性能,與其他方法相比,它具有更好的數據包傳輸率。
摘要(英) Satellite communication recently becomes popular as it can provide services to any location on Earth without geographical limitations. Despite its advantages, low Earth orbit satellite networks face unpredictable link failures and frequent topological changes. The oblateness of the Earth makes the altitude changes as they travel around the equator and boundary of constellation, and because of the long distances between satellites, pointing accuracy is a critical issue in inter satellite communication. However, the changing relative position (resulting from oblateness of the earth) of a neighboring satellites significantly reduces pointing accuracy. Through the periodic variations of satellites, in this paper, we proposed a inter-satellite link quality estimation model, and a link-quality-based routing algorithm. In addition, we consider the delay issue caused by satellite and ground station handover. To tacle this issue, we propose a packet forwarding mechanism to avoid packet loss. The final experimental results also indicate that our method sacrifices a little of performance, it performs better packet delivery rate compared to other methods.
關鍵字(中) ★ 低軌衛星
★ 軌道
★ 路由
★ 鏈路失效
關鍵字(英) ★ Low earth orbit satellites
★ Orbits
★ Routing
★ Link failure
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Background 4
2.1 Laser Inter-satellite Link 4
2.2 Satellite ground station interconnection methodology 5
3 Related Work 6
3.1 Central Routing 7
3.1.1 Central Routing for link failure 7
3.1.2 Laser Point error 7
3.2 Distribute Routing Algorithm 9
3.3 Hybrid Routing Algorithm for link failure 9
4 System Model 11
4.1 Constellation and Network Topology 11
4.2 Satellite Link Interface 12
5 Methodology 13
5.1 The Non-spherical Earth Perturbation 13
5.2 Optical link pointing accuracy 17
5.3 Adaptive routing algorithm 18
5.4 Routing algorithm 19
5.5 Topology update of satellite network 20
5.6 Satellite-to-ground station communication 21
5.7 Random Fail Path 23
6 Performance Evaluation 24
7 Conclusion 30
Bibliography 31
Appendices 34
.1 Main path 35
.2 Link recovery check mechanism 37
參考文獻 [1] O. A. A. Al-Selwi and P. A. Babiker, “Comparison of microwave and optical wireless inter-satellite links,” 2020.
[2] P. Kumar, S. Bhushan, D. Halder, and A. M. Baswade, “fybrrlink: Efficient qosaware routing in sdn enabled future satellite networks,” IEEE Transactions on Network and Service Management, 2021.
[3] Z. Luo, T. Pan, E. Song, H. Wang, W. Xue, T. Huang, and Y. Liu, “A refined dijkstra’s algorithm with stable route generation for topology-varying satellite networks,” 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),2021.
[4] Y. Zhu, L. Qian, L. Ding, F. Yang, C. Zhi, and T. Song, “Software defined routing algorithm in leo satellite networks,” 2017 International Conference on Electrical
Engineering and Informatics (ICELTICs), 2017.
[5] T. Pan, T. Huang, X. Li, Y. Chen, W. Xue, and Y. Liu, “OPSPF: Orbit prediction shortest path first routing for resilient leo satellite networks,” IEEE International Conference on Communications (ICC), pp. 1–6, 2019.
[6] G. Ruan, T. Pan, C. Lu, Z.-J. Luo, H. Wang, J. Zhang, Y. Shen, T. Huang, and Y. jie Liu, “Lightweight route flooding via flooding topology pruning for leo satellite networks,” ICC 2022 - IEEE International Conference on Communications, pp.1149–1154, 2022.
[7] D. Aviv, “Laser space communications / david g. aviv.” SERBIULA (sistema Librum 2.0), pp. 18–20, 06 2023.
[8] R. Korobkov, “Master’s thesis a global broadband leo constellation model: Deriving the requirements for laser inter-satellite communications,” Ph.D. dissertation, 06
2020.
[9] P. Boedhihartono and G. Maral, “Evaluation of the guaranteed handover algorithm in satellite constellations requiring mutual visibility,” International Journal of Satellite Communications and Networking, vol. 21, 2003.
[10] M. Kasal, “Remote controlled satellite ground station,” Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005.,2005.
[11] E. Papapetrou, S. Karapantazis, G. Dimitriadis, and F.-N. Pavlidou, “Satellite handover techniques for leo networks,” International Journal of Satellite Communications and Networking, vol. 22, 2004.
[12] Z. Wu, G. Hu, Y. Seyedi, and F. Jin, “A simple real-time handover management in the mobile satellite communication networks,” 2015 17th Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2015.
[13] S. Kalyanasundaram, E. K. P. Chong, and N. B. Shroff, “An efficient scheme to reduce handoff dropping in leo satellite systems,” Proceedings Seventeenth IEEE
Symposium on Reliable Distributed Systems (Cat. No.98CB36281), 1998.
[14] “Jonathan’s space pages,” 2023, https://planet4589.org/space/con/star/stats.html.
[15] Y. Lee, J. Kwak, and J. P. Choi, “Impact of optical isl on satellite routing path discovery in leo satellite mega-constellation,” 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021.
[16] Z. Zhao, Q. Wu, H. Li, Z. Lai, and J. Liu, “Lrar: A lightweight risk-avoidance routing algorithm for leo satellite networks,” 2021 International Wireless Communications and Mobile Computing (IWCMC), 2021.
[17] T. Shake, J. Sun, T. Royster, and A. Narula-Tam, “Contingent routing using orbital geometry in proliferated low-earth-orbit satellite networks,” in MILCOM 2022-2022
IEEE Military Communications Conference (MILCOM). IEEE, 2022, pp. 404–411.
[18] X. Qi, B. Zhang, and Z. Qiu, “A distributed survivable routing algorithm for megaconstellations with inclined orbits,” IEEE Access, vol. 8, 2020.
[19] R. Bevilacqua and M. Romano, “Rendezvous maneuvers of multiple spacecraft using differential drag under j2 perturbation,” Journal of Guidance Control and Dynamics,
vol. 31, 2008.
[20] S. D. Vtipil and B. Newman, “Determining an earth observation repeat ground track orbit for an optimization methodology,” Journal of Spacecraft and Rockets, vol. 49,
2012.
[21] “In april 2020 spacex submitted an application asking for approval to relocate shells 2-5 down to altitudes ranging from 540 km to 570 km. proposed orbital configuration,” 2020, https://fcc.report/IBFS/SAT-MOD-20200417-00037/2274315.
[22] A. U. Chaudhry and H. Yanikomeroglu, “Laser intersatellite links in a starlink constellation: A classification and analysis,” IEEE Vehicular Technology Magazine, vol. 16, 2021.
[23] “Starlink gateway,” 2020, https://www.google.com/maps/d/u/0/viewer?
mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY&hl=en_US&ll=-7.
729820278120223%2C117.23161191003436&z=2.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明