博碩士論文 110521067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.216.219.75
姓名 呂旻哲(Min-Che Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全氧化鋅熱電材料開發及模組製作
(Development of Zinc Oxide Thermoelectric Materials and Module Fabrication)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球暖化的問題已受到全世界的重視,找尋一個環保且友善環境的再生能源非常重要。隨著奈米科技的進步,熱電材料是其中一個優秀的選擇,它能在熱能與電能之間做轉換,利用溫差來產生電能進而提高能源的使用率,適合運用在工廠或是汽車這類有大量廢熱的地方。
熱電材料的特性隨著材料的不同而改變,其中氧化物半導體具有良好的熱穩定性、化學穩定性、無毒且環保,是一種良好的熱電材料。
本論文研究氧化鋅材料,經由對氧化鋅做不同的掺雜製作出N-type試片與P-type試片,N-type材料是對氧化鋅掺雜2at%的Al2O3及CeO2,而P-type材料是對氧化鋅掺雜0.192at%的ZnP。並利用銀膠與鎳膠、銅金屬片、鎳金屬片、鉭金屬片當作接觸金屬製作出熱電模組,並在不同溫度下量測其輸出功率。
摘要(英) The issue of global warming has garnered worldwide attention, highlighting the importance of seeking environmentally friendly and sustainable energy sources. With advancements in nanotechnology, thermoelectric materials have emerged as an excellent option for converting heat into electricity. By harnessing temperature differentials, these materials can generate electrical power, thereby enhancing energy efficiency. Consequently, they find practical applications in settings such as factories or vehicles that generate substantial amounts of waste heat.
The characteristics of thermoelectric materials vary based on the specific materials employed. Among them, oxide semiconductors possess desirable attributes such as thermal stability, chemical stability, non-toxicity, and environmental friendliness, making them an ideal choice for thermoelectric applications.
This study focuses on zinc oxide (ZnO) materials. N-type and P-type samples were prepared by doping ZnO with different elements. The N-type material was doped with 2 at% Al2O3 and CeO2, while the P-type material was doped with 0.192 at% of ZnP. To construct thermoelectric modules, contact metals such as silver paste, nickel paste, copper foil, nickel foil, and tantalum foil were employed. The output power of these modules was measured at various temperatures.
關鍵字(中) ★ 熱電
★ 熱電材料
★ 熱電模組
★ 氧化鋅
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 氧化鋅(ZnO)介紹 2
1-2-1 氧化鋅基本性質 2
1-2-2 N-type氧化鋅 3
1-2-3 P-type氧化鋅 3
1-3 熱電材料應用 4
1-4 研究動機 5
第二章 熱電基礎與理論 6
2-1 熱電效應 6
2-1-1 席貝克效應(Seebeck effect) 6
2-1-2 帕爾帖效應(Peltier effect) 7
2-1-3 湯姆森效應(Thomson effect) 8
2-2 熱導率(Thermal Conductivity) 9
2-3 熱電優值(Thermoelectric figure of merit) 10
2-4 熱電轉換效率 11
2-5 熱電材料分類 12
第三章 實驗步驟與儀器 13
3-1 開發步驟 13
3-2 實驗流程 16
3-3 實驗方法 17
3-3-1 奈米級氧化鋅粉末製備 17
3-3-2 奈米級磷化鋅(ZnP)製備 18
3-3-3 N-type及P-type氧化鋅粉末製備 20
3-3-4 聚乙烯醇溶液(Binder)製備 21
3-3-5 N-type及P-type氧化鋅接觸金屬測試 22
3-3-6 熱電模組製作 23
3-4 量測儀器與方法 24
3-4-1 電導率量測 24
3-4-2 席貝克係數量測 25
3-4-3 密度量測 26
3-4-4 熱擴散量測 27
3-4-5 比熱量測 28
3-4-6 掃描式電子顯微鏡 29
3-4-7 粉末X光繞射儀 30
3-4-8 熱電模組電性量測 31
第四章 實驗結果分析與討論 33
4-1 前言 33
4-2 N-type氧化鋅塊材接觸金屬測試及量測 34
4-2-1 測試Cu片塗銀膠/Ni片塗銀膠 35
4-2-2 測試Ta片/ss304片/Ni片 36
4-2-3 測試Cu片塗銀膠+Ni片+Ta片/Ta片塗銀膠/Ni片塗銀膠+Ta片 38
4-3 P-type氧化鋅塊材接觸金屬測試及量測 40
4-3-1 測試Cu片塗鎳膠/Ni片塗鎳膠 41
4-3-2 測試Ti片/Ta片/Co片/ss304片 42
4-3-3 改良測試Cu片塗鎳膠+Ni片+Ta片/Cu片塗銀膠+Ni片+Ta片 44
4-4 接觸金屬厚薄度測試及量測 46
4-4-1 測試Cu片厚薄度影響 46
4-4-2 測試Ta片厚薄度影響 48
4-5 全氧化鋅熱電模組製作 50
4-5-1 利用點焊串接單對全氧化鋅PN試片製作熱電模組 51
4-5-2 利用點焊串接兩對全氧化鋅PN試片製作熱電模組 51
4-6 全氧化鋅熱電元件量測 52
4-7 全氧化鋅熱電模組量測 54
4-7-1 單對全氧化鋅(PN)點焊串接之熱電模組 54
4-7-2 兩對全氧化鋅(PNPN) 點焊串接之熱電模組 58
4-8 全氧化鋅含接觸金屬試片EDS-mapping分析 64
4-8-1 N-type含接觸金屬試片EDS-mapping分析 64
4-8-2 P-type含接觸金屬試片EDS-mapping分析 65
第五章 結論與未來展望 67
參考文獻 68
參考文獻 [1] 優化熱電材料的方法揭密!熱電元件解說大全|國立清華大學 陳信文教授、國立陽明交通大學 吳欣潔副教授
https://www.matek.com/zh-TW/Tech_Article/detail/latest/all/202212-IAR
[2] 全球熱電模組之應用現況
https://www.materialsnet.com.tw/DocView.aspx?id=24144
[3] 游皓任, "穿戴裝置的未來新能源—可撓式熱電晶片", 科學月刊第 578 期, 2018.
[4] 張益新, "銅製程矽晶片上 ZnO 薄膜合成之研究" , 國立成功大學, 材料科學及工程學系, 碩士論文, 2000.
[5] A. Janotti, C.G. Van de Walle, "Native point defects in ZnO", 2007.
[6] D. C. Look, J. W. Hemsky, J. R. Sizelove, "Residual Native Shallow Donor in ZnO", 1999.
[7] D. C. Look, "Recent advances in ZnO materials and devices", 2001.
[8] W. Lee, R.P. Dwivedi, C. Hong, H.W. Kim, N. Cho, C. Lee, J. Mater. Sci. Lett. 43, 1159, 2008.
[9] Bob Jin Kwon, Jong-Young Kim, Soon-Mok Choi, Sung Jin An, "Highly transparent and conducting graphene-embedded ZnO films with enhanced photoluminescence fabricated by aerosol synthesis", 2014.
[10] M. Wang, Y. Yang, P. Lan, K. Zhu, J. Huang, Y. Lu, R. Tan and W. Song, Phys. Status Solidi RRL, 8, 172–175, 2014.
[11] Leong, E.S.P.; Yu, S.F.; Chong, M.K.; Tan, O.K.; Pita, K. "Metal-oxide-SiO2 composite ZnO lasers", 2005.
[12] Zhang, X.Q.; Suemune, I.; Kumano, H.; Yao, Z.G.; Huang, S.H. "Room temperature ultraviolet lasing action in high-quality ZnO thin films", 2007.
[13] Chu, S.; Olmedo, M.; Yang, Z.; Kong, J.; Liu, J. "Electrically pumped ultraviolet ZnO diode lasers on Si", 2008.
[14] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,P. Yang, Science 292 (2001) 1897.
[15] D.S Ginley, C.Bright, Master.Res.Soc. Bull. 25, p.15, 2000.
[16] M. Law,L.E. Greene, J.C.Johnson, R.Saykally, P.D. Yang, "Nanowire dye-sensitized solar cells", 2005.
[17] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, "RETRACTED: Recent progress in processing and properties of ZnO", 2005.
[18] Krishnamoorthy, S.; Iliadis, A.A. "Properties of High Sensitivity ZnO Surface Acoustic Wave Sensors on SiO2/ (100) Si Substrates", 2008
[19] Kumar, S.; Kim, G.H.; Sreenivas, K.; Tandon, R.P. "ZnO based surface acoustic wave ultraviolet photo sensor", 2008.
[20] Chivukula, V.; Ciplys, D.; Shur, M.; Dutta, P. "ZnO nanoparticle surface acoustic wave UV sensor", 2010.
[21] D.E. Devoe, "Piezoelectric thin film micromechanical beam resonators", 2001.
[22] Morkoç, H. & Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Zinc Oxide: Fundamentals, Materials and Device Technology 245–268 (John Wiley and Sons), 2009.
[23] B. Lin and Z. Fu, Appl. Phys. Lett. Vol. 79 ,2001.
[24] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, Mater. Sci. Eng. B 71, 301, 2000.
[25] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, "High‐temperature thermoelectric properties of (Zn1−xAlx)O", 1996.
[26] S. Jantrasee1, P. Moontragoon, S. Pinitsoontorn,"Thermoelectric properties of Al-doped ZnO: experiment and simulation", 2016.
[27]H. Colak, "Synthesis and characterization of CeO2-doped ZnO", 2016.
[28] Y. Gao, G. Li, Z. Wang, S. Liu, Q. Wang, "Enhancement of electric and magnetic properties by tuning Co cluster in ZnO films via high magnetic field", 2017.
[29] Y. Yan, S. Zhang, S. Pennycook, S. Pantelides, Cambridge University Press,2001, pp. F2. 6.
[30] W. W. Liu, C. L. Liu, X. B. Chen, J. H. Lu, H. X. Chen, Z. Z Miao, Physics Letters A, 384(8) (2020) 126172.
[31] H. Ahmoum, M. Boughrara, M.S. Su′ait, S. Chopra, M. Kerouad, "Impact of position and concentration of sodium on the photovoltaic properties of zinc oxide solar cells", 2019.
[32] H. Ahmoum, M. Boughrara, M. S. Su’ait, M. Kerouad, "Effect of position and concentration of Li on ZnO physical properties: Density functional investigation", 2019.
[33] H. B. Ruan, C. Y. Kong, G. P. Qin, W. J. Li, T. Y. Yang, F. Wu, L. Fang, "Influence of Mn doping content on magnetic properties of a (Mn, N) co-doped ZnO system"2014.
[34] Y.Zhao, M. Zhou, Z. Lv, Z. Li, J. Huang, X. Liang, J. Min, "Materials Science in Semiconductor Processing", 14 (2011) 257.
[35] Hassan Ahmoum, Guojian Li, Yang Jin, Mourad Boughrara, Mohd Sukor Su’ait,Siddheshwar Chopra, D. P. Rai, Mohamed Kerouad, Qiang Wang, "Doping dependent onthe p-type thermoelectric properties of ZnO: First principal calculation", 2020.
[36] 黃振東、徐振庭, "熱電材料", 科學發展月刊 486 期, 2013.
[37] Powering Your Car with Waste heathttps://www.technologyreview.com/2011/05/25/194479/powering-your-car-with-waste-heat/
[38] "熱電致冷晶片之特性與應用", 材料世界網, 2018.
[39] 能源知識庫 固態熱電發電技術開發與應用計畫
https://km.twenergy.org.tw/Knowledge/knowledge_more?id=980
[40] Yang, Y.; Li, X.; Chen, J.; Chen, H.; Bao, X. "ZnO nanoparticles prepared by thermal decomposition of beta-cyclodextrin coated zinc acetate", 2003.
[41] Oprea, O.; Vasile, O.R.; Voicu, G.; Andronescu, E. "The influence of the thermal treatment on luminescence properties of ZnO", 2013.
[42] Oprea, O.; Andronescu, E.; Vasile, B.S.; Voicu, G.; Covaliu, C. "Synthesis and characterization of ZnO nanopowder by non-basic route", 2011.
[43] Wu, J.J.; Liu, S.C. "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition", 2002.
[44] Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin/Heidelberg, Germany, 2010.
[45] Electrical4U. "Seebeck Effect: What is it? (Voltage, Coefficient & Equation)." https://www.electrical4u.com/seebeck-effect-and-seebeck-coefficient/
[46] S.Kodeeswaran, T.Ramkumar, R.Jai Ganesh, " Precise Temperature Control Using Reverse Seebeck Effect", 2017.
[47] HoSung Lee, "Thermoelectrics: Design and Materials", 2016.
[48] 熱導率是什麼?
https://thermtestasia.com/what-is-thermal-conductivity
[49] Ioffe, A.F. Semiconductor Thermoelements, and Thermoelectric Cooling, 1st ed.; Info-search Ltd.: London, UK, 1957.
[50] SW Angrist Direct Energy Conversion (Allyn and Bacon, Boston, 1965).
[51] "熱電材料特性研究與相關應用."
https://www.acttr.com/tw/tw-report/tw-report-technology/238-tw-tech-thermoelectric-research-application.html
[52] Daishi Shiojiri 1, Tsutomu Iida, Naomi Hirayama, Yoji Imai, Hiroharu Sugawara, Jin Kusaka, "Recent Studies on the Environmentally Benign Alkaline-EarthSilicide Mg2Si for Middle-Temperature Thermoelectric Applications", 2022.
[53] 劉修豪, "金屬氧化物製備應用於軟性電子元件", 國立中央大學, 電機工程學系, 碩士論文, 2016.
[54] 曾思翰, "金屬氧化物熱電材料製程開發之研究", 國立中央大學, 電機工程學系, 碩士論文, 2021.
[55] 林育賢, "全氧化鋅熱電材料開發及元件製作", 國立中央大學, 電機工程學系, 碩士論文, 2022.
[56] Parker WJ, Jenkins RJ, Butler CP, Abbott GL. A, "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity", 2004.
[57] Akoshima M, Hay B, Neda M, Grelard M, "Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method", 2013.
[58] "Thermal Diffusivity and the Laser Flash Method."
https://www.jove.com/pdf/10488/jove-protocol-10488-thermal-diffusivity-and-the-laser-flash-method
[59] "熱分析-DSC 熱示差掃瞄卡量計(DSC)原理."
https://www.techmaxasia.com/knowledge-detail/DSC-20080112/
[60] 羅聖全, "科學基礎研究之重要利器——掃瞄式全電子顯微鏡(SEM)," 科學研習月刊, 2013.
[61] 屏科大材料工程研究所電子陶瓷與薄膜實驗室/實驗設備
https://ctml.npust.edu.tw/%E5%AF%A6%E9%A9%97%E8%A8%AD%E5%82%99/
[62] 楊仲準, "X 光繞射分析技術與應用," 科儀新知, 2011.
https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/182/01820640.pdf.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明