博碩士論文 110522163 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.217.128.108
姓名 劉韋亨(Wei-Heng Liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用 ISL 數據中繼改進 LEO 衛星星座的遙測數據下載
(Improving Remote Sensing Data Downloads for LEO Satellite Constellation with ISL Data Relay)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
★ 衛星上可重組化計算之安全FPGA動態部分可重組架構★ 衛星網路之基於空間多樣性的前導訊號設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,低地球軌道(LEO)衛星的發展受到了極大的關注。衛星
被設計用於各種任務(例如遙測、通信),將數據下載到地面站使用
戶/服務提供商可以使用所需的數據。然而衛星與 GS 每次的接觸時間
並不是固定的,衛星攜帶的數據量也可能有所不同。由於軌道偏移具
有一定的規律性,每顆衛星經過 GS 的接觸時間變化也遵循一定的模
式。我們建立了接觸時間預測模型來估計衛星與 GS 的下一次接觸時
間。對於固定任務/目標區域,衛星經過這些區域的軌跡也表現出規律
性,使我們能夠建立一個模型來估計每次服務期間生成的數據量。通
過結合聯繫時間的估計和每次服務期間生成的數據的估計,我們開發
了中繼候選衛星選擇算法。根據我們的實驗結果,我們的方法在滿足
指定延遲要求並具有較低切換頻率的同時,保持了較高的傳輸率。
摘要(英) In recent years, there has been significant attention given to the development of low earth orbit (LEO) satellites. Satellites are designed for various missions (e.g., remote sensing, communication), and data downloading to ground stations make users/service providers can access the desired information. However, the contact time between satellites and GS is not fixed each time, and the amount of data carried by satellites may also vary. Due to the regularity of orbital drift, the variations in the duration of each satellite’s passage over GS also follow a pattern. We establish a contact time prediction model to estimate the next contact time of satellites with GS. For fixed mission/ target area, the trajectories of satellites passing through these areas also exhibit regularity, allowing us to establish a model for estimating the amount of data generated during each service. By combining estimation of contact time and estimation of data generated during each service, we developed an relay candidate satellites selection algorithm. According to our experimental results, our approach maintains a high delivery rate while meeting the specified latency requirements and having a lower switching frequency.
關鍵字(中) ★ 衛星
★ ISL
★ 路由
★ 低地球軌道
★ 遙測
★ 地面站
★ 換手
★ 軌道
關鍵字(英) ★ Satellites
★ ISL
★ Routing
★ Low earth orbit satellites
★ Remote sensing
★ Ground station
★ Handover
★ Orbits
論文目次 中文摘要i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Introduction 1
2 Related Work 5
2.1 Related Work 5
2.1.1 Scheduling without using ISL 5
2.1.2 Centralized downloads using extra relay satellites 6
2.1.3 Data relay between LEO satellites by using ISL 6
3 System Model 8
3.1 System Model 8
3.1.1 Satellite network topology 8
3.1.2 Problem definition 9
4 Methodology 11
4.1 Methodology 11
4.1.1 Overview 11
4.1.2 GS contact time analysis 11
4.1.3 ISL Relay selection 14
4.1.4 Multiple satellites visible to GS 21
5 Performance and Evaluation 24
5.1 Performance Evaluation 24
5.1.1 Simulation parameters 24
5.1.2 Simulation result 26
6 Conclusion 31
Bibliography 32
參考文獻 [1] “Cubesats overview,” [Online]. Available: https://www.nasa.gov/mission_pages/cubesats/overview.
[2] U. o. M. Jeremy Castaing, “Scheduling downloads for multi-satellite, multi-ground station missions,” Small Satellite Conference (SSC14-VIII-4), 2014.
[3] T. Ling, L. Liu, C. Zheng, and Z. Liang, “An efficient real-time scheduling and proactive data download algorithm for earth observation satellites,” in 2018 18th International Symposium on Communications and Information Technologies (ISCIT), 2018, pp. 339–344.
[4] X. Jia, T. Lv, F. He, and H. Huang, “Collaborative data downloading by using intersatellite links in leo satellite networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1523–1532, 2017.
[5] T. Pan, T. Huang, X. Li, Y. Chen, W. Xue, and Y. Liu, “Opspf: Orbit prediction shortest path first routing for resilient leo satellite networks,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
[6] B. Soret and D. Smith, “Autonomous routing for leo satellite constellations with minimum use of inter-plane links,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
[7] S. Arnon, “Power versus stabilization for laser satellite communication,” Appl. Opt., vol. 38, no. 15, pp. 3229–3233, May 1999. [Online]. Available: https: //opg.optica.org/ao/abstract.cfm?URI=ao-38-15-3229
[8] T. Lv, W. Liu, H. Huang, and X. Jia, “Optimal data downloading by using intersatellite offloading in leo satellite networks,” in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6.
[9] J. G. Walker, “Satellite constellations,” Journal of the British Interplanetary Society, vol. 37, pp. 559–571, 1984.
[10] “Stk,” [Online]. Available: https://www.ansys.com/products/missions/ansys-stk.
[11] “Aws,” [Online]. Available: https://aws.amazon.com/tw/ground-station/.
[12] “omnet++,” [Online]. Available: https://omnetpp.org/.
[13] T. C. Pita, I. P. Vieira, and D. A. A. Mello, “All digital compensation of doppler shift in leo-leo optical inter-satellite links,” in Optica Advanced Photonics Congress 2022. Optica Publishing Group, 2022, p. SpTu3G.2. [Online]. Available:
https://opg.optica.org/abstract.cfm?URI=SPPCom-2022-SpTu3G.2
[14] A. K. Majumdar, Free-Space Optical Propagation Relevant to Integrated Space/Aerial, Terrestrial, and Underwater Links. Cham: Springer International Publishing, 2022, pp. 27–61. [Online]. Available: https://doi.org/10.1007/978-3-
031-03972-0_2
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明