博碩士論文 110521106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.149.255.196
姓名 詹永騰(YONG-TENG ZHAN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合耦合電感與可擴展倍壓單元之低輸入電流漣波高升壓轉換器
(High Step-up DC-DC Converter With Low Input Current Ripple Combining Coupled Inductor and Scalable Voltage Multiplier)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-23以後開放)
摘要(中) 本論文提出一升壓的直流-直流轉換器,其架構是以二次升壓電路為基底並結合了雙繞組耦合電感、輸入電流漣波抑制單元和與耦合電感二次側整合的可疊加階數倍壓單元電路。提出的轉換器能在較低的工作週期下達到高輸出電壓,也可透過調整耦合電感的二次側繞組匝數與倍壓單元階數,達到所需之高電壓增益目的;輸入端電感與兩電容串聯形成的輸入電流漣波抑制單元明顯降低了輸入端的電流漣波大小;僅使用單個開關元件,控制相較簡易且電壓應力低於輸出端電壓,進而降低開關的損耗;由於耦合電感產生的漏電感,提供部分輸出二極體零電流切換的特性,使二極體的反向恢復問題與導通損耗得以緩解。
本論文明確分析電路的運作原理與穩態電壓增益並且計算各項元件的應力公式與參數設計,訂出轉換器架構中各項元件的規格和參數,此外,藉由所計算出的各項元件應力公式進行損耗與效率估算。最後,進行模擬與實作所提出的電路以驗證可行性、效能及理論分析。
摘要(英) This thesis proposes a step-up DC-DC converter, which is based on quadratic boost circuit and combines dual winding coupled inductor, a low input current ripple unit, and a stacked order voltage multiplier unit circuit integrated with the secondary side of the coupled inductor. The proposed converter can achieve high output voltage at lower duty cycle, and can also achieve the desired high voltage gain by adjusting the turn ratio of the coupled inductor and the order of the voltage multiplier unit; Input current ripple suppression unit formed by the series connection of the input inductor and two capacitors significantly reduces the input current ripple; Using only a single switch element, the control is relatively simple and voltage stress is lower than the output voltage, thereby reducing switch losses; Due to the leakage inductance generated by the coupling inductance, it provides the characteristics of output diode zero current switching, so that the reverse recovery problem and conduction loss of the diode can be alleviated.
This thesis accurately analyzes the operating principle of the circuit and steady-state voltage gain, the stress formulas and parameter designs of each component are calculated to clearly understand the specifications and parameters of each component in the proposed converter architecture. In addition, the loss and efficiency estimation is carried out using the stress formulas of each component calculated in the previous section. Finally, simulate and experiment the proposed circuit to verify the feasibility, performance, and theoretical analysis.
關鍵字(中) ★ 直流–直流轉換器
★ 高電壓增益
★ 倍壓單元
★ 低輸入電流漣波
★ 二次升壓轉換器
★ 耦合電感
★ 非隔離式轉換器
關鍵字(英) ★ DC–DC Converter
★ High Voltage Gain
★ Voltage Multiplier Cell (VMC)
★ Low Input Current Ripple
★ Quadratic Boost Converter (QBC)
★ Non–Isolated Converter
論文目次 目錄
摘 要 i
Abstract ii
誌 謝 iii
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1研究背景 1
1-2研究動機 2
1-3論文架構 4
第二章 各種升壓技術之文獻探討 5
2-1各種升壓技術拓樸與架構介紹 5
2-1-1被動式切換電感 5
2-1-2主動式切換電感結合切換電容 6
2-1-3改良型主動式切換電感結合切換電容 7
2-1-4交錯式拓樸結合倍壓單元 8
2-1-5磁耦合結合交錯式拓樸與倍壓電路 9
2-1-6級聯升壓轉換器 12
2-1-7兩級升壓拓樸結合磁耦合與倍壓單元 13
2-2所提出的轉換器架構與目的 14
第三章 電路設計 ..16
3-1電路主架構介紹 16
3-2輸入電流連波抑制單元分析 17
3-3電路切換時序說明 20
3-4穩態電壓增益推導 28
3-5元件應力分析與計算 30
3-5-1元件電壓應力 30
3-5-2元件電流應力 32
3-5-3元件RMS電流值 36
3-6元件設計考量 38
3-6-1電感電流漣波計算與設計 39
3-6-2電感(L_1)電流漣波計算與設計 41
3-6-3電容電壓漣波計算與設計 41
3-6-4電容(C_2)電流漣波計算與設計 43
3-7元件損耗與效率分析 45
3-7-1元件損耗分析 45
3-7-2效率分析 48
第四章 電路模擬分析 ..54
4-1電路模擬與參數規格設置 54
4-2轉換器模擬波形的結果 55
4-2-1具一階倍壓單元轉換器之電路架構 55
4-2-2具二階倍壓單元轉換器之電路架構 61
4-3架構比較 64
第五章 電路實作與量測結果 ..69
5-1電路實作 69
5-2轉換器實作電路設計 71
5-3量測結果 72
5-3-1實作電路波形 72
5-3-2轉換器效率 78
第六章 結論 ..80
參考文獻 ..82
參考文獻 [1] S. -W. Seo, J. -H. Ryu, Y. Kim and H. H. Choi, "Transformerless Quadruple High Step-Up DC/DC Converter Using Coupled Inductors," IEEE Access, vol. 10, pp. 26501-26513, March 2022.
[2] M. Farsijani, S. Abbasian, H. Hafezi, M. T. Bina and K. Abbaszadeh, "Design and Implementation of a Single Switch High Gain Boost Topology: Structure, Ripple Control and ZCS," IEEE Access, vol. 11, pp. 2092-2104, Jan. 2023.
[3] S. Khan et al., "A New Transformerless Ultra High Gain DC–DC Converter for DC Microgrid Application," IEEE Access, vol. 9, pp. 124560-124582, Sep. 2021.
[4] R. Afzal, Y. Tang, H. Tong and Y. Guo, "A High Step-up Integrated Coupled Inductor-Capacitor DC-DC Converter," IEEE Access, vol. 9, pp. 11080-11090, Dec. 2021.
[5] D. Sadeghpour and J. Bauman, "High-Efficiency Coupled-Inductor Switched-Capacitor Boost Converter with Improved Input Current Ripple," IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 7940-7951, Aug. 2022.
[6] M. E. Azizkandi, F. Sedaghati, H. Shayeghi and F. Blaabjerg, "A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell," IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4558-4567, May 2020.
[7] H. Bi, Z. Mu and Y. Chen, "Common Grounded Wide Voltage-Gain Range DC–DC Converter with Zero Input Current Ripple and Reduced Voltage Stresses for Fuel Cell Vehicles," IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2607-2616, March 2023.
[8] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, "Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications," IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[9] B. Axelrod, Y. Berkovich and A. Ioinovici, "Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, Mar. 2008.
[10] M. A. Salvador, J. M. de Andrade, T. B. Lazzarin and R. F. Coelho, "Nonisolated High-Step-Up DC–DC Converter Derived from Switched-Inductors and Switched-Capacitors," IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8506-8516, Oct. 2020.
[11] L.-S. Yang, T.-J. Liang and J.-F. Chen, "Transformerless DC–DC Converters with High Step-Up Voltage Gain," IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[12] C. Cui, Y. Tang, Y. Guo, H. Sun and L. Jiang, "High Step-Up Switched-Capacitor Active Switched-Inductor Converter with Self-Voltage Balancing and Low Stress," IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 10112-10128, Oct. 2022.
[13] V. A. K. Prabhala, P. Fajri, V. S. P. Gouribhatla, B. P. Baddipadiga and M. Ferdowsi, "A DC–DC Converter with High Voltage Gain and Two Input Boost Stages," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4206-4215, June 2016.
[14] John F. Dickson, “On–chip High–Voltage Generation in NMOS Integrated Circuits Using an Improved Voltage Multiplier Technique,” IEEE Journal of Solid-State Circuits, Vol. 11, No. 3, pp. 374–378, June. 1976.
[15] S. -W. Seo, J. -H. Ryu, Y. Kim and J. -B. Lee, "Ultra-High Step-Up Interleaved Converter With Low Voltage Stress," IEEE Access, vol. 9, pp. 37167-37178, Feb. 2021.
[16] A. Alzahrani, M. Ferdowsi and P. Shamsi, "High-Voltage-Gain DC–DC Step-Up Converter With Bifold Dickson Voltage Multiplier Cells," IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9732-9742, Oct. 2019.
[17] Ju-Won Baek, Myung-Hyo Ryoo, Tae-Jin Kim, Dong-Wook Yoo and Jong-Soo Kim, "High Boost Vonverter Using Voltage Multiplier," 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., Raleigh, NC, USA, 2005, pp. 6 pp.-.
[18] Tsai-Fu Wu and Te-Hung Yu, "Unified Approach to Developing Single-Stage Power Converters," IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 211-223, Jan. 1998.
[19] J. Leyva-Ramos, M.G. Ortiz-Lopez, L.H. Diaz-Saldierna, and J.A. Morales-Saldaña, “Switching Regulator Using a Quadratic Boost Converter For Wide DC Conversion Ratios,” IET Power Eletronics, Vol. 2, No. 14, pp. 605–613, Sep. 2009.
[20] M. Rezaie and V. Abbasi, "Ultrahigh Step-Up DC–DC Converter Composed of Two Stages Boost Converter, Coupled Inductor, and Multiplier Cell," IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5867-5878, June 2022.
[21] W. Hassan, D. D. -C. Lu and W. Xiao, "Single-Switch High Step-Up DC–DC Converter With Low and Steady Switch Voltage Stress," IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9326-9338, Dec. 2019.
[22] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics,3rd ed. Boulder, CO, USA: Springer Nature Switzerland AG, 2020.
[23] Soft Magnetic Powder Cores Datasheet, Chang Sung Corporation Inc., 2018.
[24] T. Jalilzadeh, N. Rostami, E. Babaei and M. Maalandish, "Nonisolated Topology for High Step-Up DC–DC Converters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 1, pp. 1154-1168, Feb. 2023.
[25] J. Ai, M. Lin and M. Yin, "A Family of High Step-Up Cascade DC–DC Converters With Clamped Circuits," IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4819-4834, May 2020.
[26] K. Yari, S. H. Shahalami and H. Mojallali, "A Novel Nonisolated Buck–Boost Converter with Continuous Input Current and Semiquadratic Voltage Gain," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 6124-6138, Oct. 2021.
[27] S. Khan, M. Zaid, M. M. A. Khan and A. Sarwar, "A Non-Pulsating Input Current Step-Up DC/DC Converter With Common Ground Structure for Photovoltaic Applications," IEEE Access, vol. 9, pp. 159432-159446, Nov. 2021.
[28] Mirzaee, A., S. Arab Ansari, and J. Shokrollahi Moghani, "Single Switch Quadratic Boost Converter with Continuous Input Current for High Voltage Applications, " International Journal of Circuit Theory and Applications, 48(4): p. 587-602, Dec. 2020.
[29] Yang, J., Yu, D., Cheng, H., Zan, X. and Wen, H., "Dual-Coupled Inductors-Based High Step-Up DC/DC Converter Without Input Electrolytic Capacitor for PV Application," IET Power Electronics, 10: 646-656, Feb. 2017.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明