博碩士論文 110522141 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.190.219.238
姓名 莊涵迪(Han-Di Zhuang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於降維計算與群聚演算法優化語者分離系統
(Speaker Diarization System Optimized by Dimensionality Reduction and Clustering Algorithm)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 基於 ARM 架構上的 ORB-SLAM2 的應用與改進
★ 基於深度學習之指數股票型基金趨勢預測★ 探討財經新聞與金融趨勢的相關性
★ 基於卷積神經網路的情緒語音分析★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來深度學習的興起帶來了⼀系列技術的進展,尤其在語⾳這塊領域,透過深度 學習可達到傳統⽅法或⼈⼒達不到的境界。隨著各項語⾳服務的需求,語者分離技術也 愈發受到重視,語者分離系統主要任務爲標⽰出⼀段對話中“誰”在“何時”有說話,⽽這 類的標識結果可幫助其他深度學習語⾳模型辨識出使⽤者與⾮使⽤者的交談內容,如語 ⾳辨識,聊天機器⼈,語⾳增強等,都是透過語者分離將⽬標⼈聲分離出,再進⼀步達 成其下游任務。語者分離模型最常⾒的做法是利⽤語者特徵提取網路,如 x-vectors,i vectors 等,將參與對話的語者特徵提取出,再透過群聚演算法⽐對輸⼊語⾳⽚段達到語 者分離的結果。然⽽,使⽤常⾒的群聚演算法如 K-means、SC(Spectral Clustring)皆遭遇 到相似的瓶頸,在⾼維度的特徵向量在進⾏群聚演算法的計算時,可能導致分類效果不 佳,以及運算時間過⾧。爲了突破此瓶頸,我們在實驗上先使⽤ ECAPA-TDNN 當作語 者特徵提取器,再使⽤ UMAP 對特徵向量降維,UMAP 在許多與分類相關領域都取得 優異的成績,使⽤其進⾏降維可以較好的保留原資料在⾼維度中的結構,使其成爲近年 相當熱⾨的降維演算法。接著我們分別使⽤ Leiden 與 HDBSCAN 演算法進⾏群聚,其 中 HDBSCAN 演算法在配合 UMAP 在分離結果上取得優異的成績,在 AMI Meeting 數 據集上取得了 2.61 的分離錯誤率。我們的⽅法透過降維計算優化了在⾼維度下進⾏群 聚計算的穩定度,並透過 HDBSCAN 演算法加強了分類準確度。我們提出的⽅法具有⼀ 般化及通⽤性,可套⽤在不同語者特徵提取網路的語者分離任務。
摘要(英) In recent years, the rise of deep learning has brought about a series of technological advances. With the demand for various speech services, speaker diarization technology has gained increasing attention. The main task of a speaker diarization system is to identify "who" spoke "when" during a conversation. The most common approach in speaker diarization models is to use speaker feature extraction techniques such as TDNN to extract the features of the speakers participating in the conversation. Then, clustering algorithms are used to match the input speech segments to achieve speaker diarization results. However, using common clustering algorithms such as K-means and SC often encounter similar bottlenecks. In more complex scenarios, we would like to use higher-dimensional feature vectors to preserve complete features. High-dimensional feature vectors can lead to poor classification results and long computation times. To overcome this bottleneck, we used ECAPA-TDNN as a speaker feature extractor, and then used UMAP to reduce the dimensionality of the feature vectors. Using UMAP can better preserve the structure of the original data in high dimensions, and it allows users to define the target dimensions for the reduction, making it a popular dimensionality reduction algorithm in recent years. We then used the HDBSCAN algorithm for clustering, which has achieved excellent results. We achieved a diarization error rate of 2.61 % on the AMI Meeting dataset. Our method optimizes stability in high dimensions through dimensionality reduction calculations and accelerates classification accuracy through the HDBSCAN algorithm. Our proposed method has generalization and universality and can be applied to speaker diarization tasks in different datasets
關鍵字(中) ★ 深度學習
★ 語者分離
★ 降維計算
★ 群聚演算法
關鍵字(英) ★ Deep Learning
★ Speaker Diarization
★ Dimension Reduction
★ Clustering Algorithm
論文目次 中文摘要 i
英文摘要 ii
目 錄 iii
圖目錄 v
表目錄 vi
一 、 緒 論 - 1 -
1-1 研究背景與目的 - 1 -
1-2 研究方法與章節概要 - 2 -
二 、 相關文獻與文獻探討 - 4 -
2-1 語者分離技術 - 4 -
2-1-1 Deep Neural Network - 5 -
2-1-2 Time Delay Neural Network - 7 -
2-1-3 TDNN-f - 10 -
2-2 群聚演算法 - 13 -
2-2-1 Spectral Clustering - 13 -
2-2-2 Leiden - 18 -
2-2-3 HDBSCAN - 22 -
2-3 降維計算 - 26 -
2-3-1 Principal Component Analysis - 28 -
2-3-2 Linear Discriminant Analysis - 31 -
2-3-3 t-SNE - 34 -
2-3-4 UMAP - 37 -
三 、 基於降維計算與群聚演算法優化語者分離系統 - 41 -
3-2 ECAPA-TDNN - 42 -
3-2-1 ECAPA-TDNN 模型架構 - 43 -
3-2-2 SE 模 塊 - 43 -
3-2-3 SE-res2Block - 44 -
3-2-4 Attentive pooling - 45 -
3-3 整體架構 - 47 -
3-3-1 降維計算演算法 - 47 -
3-3-2 群聚演算法 - 47 -
3-4 降維計算與群聚演算法應用於語者分離架構 - 49 -
3-4-1 語者特徵網路預訓練階段 - 50 -
3-4-2 降維計算與群聚演算法微調階段 - 50 -
四 、 實驗與結果說明 - 52 -
4-2 數據集 - 52 -
4-2-1 VoxCeleb - 52 -
4-2-2 AMI Meeting - 53 -
4-3 模型實現 - 54 -
4-3-1 語者特徵提取網路超參數 - 54 -
4-3-2 降維演算法與群聚演算法超參數 - 55 -
4-4 實驗結果 - 56 -
4-4-1 實驗評估方式 - 56 -
4-4-2 實驗結果展示 - 57 -
4-4-3 實驗結果探討 - 58 -
五 、 結論與未來方向 - 61 -
參考文獻 - 62 -
參考文獻 〔1〕Anguera, Xavier, et al. "Speaker diarization: A review of recent research." IEEE
Transactions on audio, speech, and language processing 20.2 (2012): 356-370.
〔2〕Bromley, Jane, et al. "Signature verification using a" siamese" time delay neural
network." Advances in neural information processing systems 6 (1993).
〔3〕Garcia-Romero, Daniel, and Carol Y. Espy-Wilson. "Analysis of i-vector length
normalization in speaker recognition systems." Twelfth annual conference of the
international speech communication association. 2011.
〔4〕Hershey, John R., et al. "Deep clustering: Discriminative embeddings for segmentation
and separation." 2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016.
〔5〕Snyder, David, et al. "X-vectors: Robust dnn embeddings for speaker recognition." 2018
IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2018.
〔6〕Krishna, K., and M. Narasimha Murty. "Genetic K-means algorithm." IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 29.3 (1999): 433-439.
〔7〕Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17
(2007): 395-416.
〔8〕Dawalatabad, Nauman, et al. "Ecapa-tdnn embeddings for speaker diarization." arXiv
preprint arXiv:2104.01466 (2021).
〔9〕McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold
approximation and projection for dimension reduction." arXiv preprint
arXiv:1802.03426 (2018).
〔10〕Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using tSNE." Journal of machine learning research 9.11 (2008).
〔11〕Traag, Vincent A., Ludo Waltman, and Nees Jan Van Eck. "From Louvain to Leiden:
guaranteeing well-connected communities." Scientific reports 9.1 (2019): 5233.
〔12〕McInnes, Leland, John Healy, and Steve Astels. "hdbscan: Hierarchical density based
clustering." J. Open Source Softw.2.11 (2017): 205.
〔13〕Wen, Wei, et al. "Learning structured sparsity in deep neural networks." Advances in
neural information processing systems29 (2016).
〔14〕Waibel, Alexander, et al. "Phoneme recognition using time-delay neural
networks." IEEE transactions on acoustics, speech, and signal processing 37.3 (1989):
328-339.
〔15〕Povey, Daniel, et al. "Semi-orthogonal low-rank matrix factorization for deep neural
networks." Interspeech. 2018.
〔16〕Fujita, Yusuke, et al. "End-to-end neural speaker diarization with self-attention." 2019
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019.
〔17〕Griffin, Daniel, and Jae Lim. "Signal estimation from modified short-time Fourier
transform." IEEE Transactions on acoustics, speech, and signal processing 32.2 (1984):
236-243.
〔18〕Sahidullah, Md, and Goutam Saha. "Design, analysis and experimental evaluation of
block based transformation in MFCC computation for speaker recognition." Speech
communication54.4 (2012): 543-565.
〔19〕Mikolov, Tomáš, et al. "Extensions of recurrent neural network language model." 2011
IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2011.
〔20〕Garofolo, John S., et al. "DARPA TIMIT acoustic-phonetic continous speech corpus
CD-ROM. NIST speech disc 1-1.1." NASA STI/Recon technical report n 93 (1993):
27403.
〔21〕Panayotov, Vassil, et al. "Librispeech: an asr corpus based on public domain audiobooks." 2015 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2015.
〔22〕Nagrani, Arsha, Joon Son Chung, and Andrew Zisserman. "Voxceleb: a large-scale
speaker identification dataset." arXiv preprint arXiv:1706.08612 (2017).
〔23〕Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences." Atmospheric
environment 32.14-15 (1998): 2627-2636.
〔24〕Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted
boltzmann machines." Proceedings of the 27th international conference on machine
learning (ICML-10). 2010.
〔25〕Wu, Fei, et al. "Advances in Automatic Speech Recognition for Child Speech Using
Factored Time Delay Neural Network." Interspeech. 2019.
〔26〕Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network
training by reducing internal covariate shift." International conference on machine
learning. pmlr, 2015.
〔27〕Merris, Russell. "Laplacian matrices of graphs: a survey." Linear algebra and its
applications 197 (1994): 143-176.
〔28〕Danielsson, Per-Erik. "Euclidean distance mapping." Computer Graphics and image
processing 14.3 (1980): 227-248.
〔29〕Van Dongen, Stijn, and Anton J. Enright. "Metric distances derived from cosine
similarity and Pearson and Spearman correlations." arXiv preprint
arXiv:1208.3145 (2012).
〔30〕Goldberger, Jacob, Shiri Gordon, and Hayit Greenspan. "An Efficient Image Similarity
Measure Based on Approximations of KL-Divergence Between Two Gaussian
Mixtures." ICCV. Vol. 3. 2003.
〔31〕Schubert, Erich, et al. "DBSCAN revisited, revisited: why and how you should (still) 〔22〕Nagrani, Arsha, Joon Son Chung, and Andrew Zisserman. "Voxceleb: a large-scale
speaker identification dataset." arXiv preprint arXiv:1706.08612 (2017).
〔23〕Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences." Atmospheric
environment 32.14-15 (1998): 2627-2636.
〔24〕Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted
boltzmann machines." Proceedings of the 27th international conference on machine
learning (ICML-10). 2010.
〔25〕Wu, Fei, et al. "Advances in Automatic Speech Recognition for Child Speech Using
Factored Time Delay Neural Network." Interspeech. 2019.
〔26〕Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network
training by reducing internal covariate shift." International conference on machine
learning. pmlr, 2015.
〔27〕Merris, Russell. "Laplacian matrices of graphs: a survey." Linear algebra and its
applications 197 (1994): 143-176.
〔28〕Danielsson, Per-Erik. "Euclidean distance mapping." Computer Graphics and image
processing 14.3 (1980): 227-248.
〔29〕Van Dongen, Stijn, and Anton J. Enright. "Metric distances derived from cosine
similarity and Pearson and Spearman correlations." arXiv preprint
arXiv:1208.3145 (2012).
〔30〕Goldberger, Jacob, Shiri Gordon, and Hayit Greenspan. "An Efficient Image Similarity
Measure Based on Approximations of KL-Divergence Between Two Gaussian
Mixtures." ICCV. Vol. 3. 2003.
〔31〕Schubert, Erich, et al. "DBSCAN revisited, revisited: why and how you should (still) 〔22〕Nagrani, Arsha, Joon Son Chung, and Andrew Zisserman. "Voxceleb: a large-scale
speaker identification dataset." arXiv preprint arXiv:1706.08612 (2017).
〔23〕Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences." Atmospheric
environment 32.14-15 (1998): 2627-2636.
〔24〕Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted
boltzmann machines." Proceedings of the 27th international conference on machine
learning (ICML-10). 2010.
〔25〕Wu, Fei, et al. "Advances in Automatic Speech Recognition for Child Speech Using
Factored Time Delay Neural Network." Interspeech. 2019.
〔26〕Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network
training by reducing internal covariate shift." International conference on machine
learning. pmlr, 2015.
〔27〕Merris, Russell. "Laplacian matrices of graphs: a survey." Linear algebra and its
applications 197 (1994): 143-176.
〔28〕Danielsson, Per-Erik. "Euclidean distance mapping." Computer Graphics and image
processing 14.3 (1980): 227-248.
〔29〕Van Dongen, Stijn, and Anton J. Enright. "Metric distances derived from cosine
similarity and Pearson and Spearman correlations." arXiv preprint
arXiv:1208.3145 (2012).
〔30〕Goldberger, Jacob, Shiri Gordon, and Hayit Greenspan. "An Efficient Image Similarity
Measure Based on Approximations of KL-Divergence Between Two Gaussian
Mixtures." ICCV. Vol. 3. 2003.
〔31〕Schubert, Erich, et al. "DBSCAN revisited, revisited: why and how you should (still) use DBSCAN." ACM Transactions on Database Systems (TODS) 42.3 (2017): 1-21.
〔32〕Cheriton, David, and Robert Endre Tarjan. "Finding minimum spanning trees." SIAM
journal on computing 5.4 (1976): 724-742.
〔33〕Osipov, Vitaly, Peter Sanders, and Johannes Singler. "The filter-kruskal minimum
spanning tree algorithm." 2009 Proceedings of the Eleventh Workshop on Algorithm
Engineering and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 2009.
〔34〕Greenberg, Harvey J. "Greedy algorithms for minimum spanning tree." University of
Colorado at Denver (1998).
〔35〕Abdi, Hervé, and Lynne J. Williams. "Principal component analysis." Wiley
interdisciplinary reviews: computational statistics2.4 (2010): 433-459.
〔36〕Balakrishnama, Suresh, and Aravind Ganapathiraju. "Linear discriminant analysis-a
brief tutorial." Institute for Signal and information Processing 18.1998 (1998): 1-8.
〔37〕Cieslak, Matthew C., et al. "t-Distributed Stochastic Neighbor Embedding (t-SNE): A
tool for eco-physiological transcriptomic analysis." Marine genomics 51 (2020): 100723.
〔38〕Wang, Tianlei, et al. "Hierarchical one-class classifier with within-class scatter-based
autoencoders." IEEE Transactions on Neural Networks and Learning Systems 32.8
(2020): 3770-3776.
〔39〕Sharma, Alok, and Kuldip K. Paliwal. "A new perspective to null linear discriminant
analysis method and its fast implementation using random matrix multiplication with
scatter matrices." Pattern Recognition 45.6 (2012): 2205-2213.
〔40〕Van Erven, Tim, and Peter Harremos. "Rényi divergence and Kullback-Leibler
divergence." IEEE Transactions on Information Theory 60.7 (2014): 3797-3820.
〔41〕Do Carmo, Manfredo Perdigao, and J. Flaherty Francis. Riemannian geometry. Vol. 6.
Boston: Birkhäuser, 1992.
〔42〕Spanier, Edwin H. Algebraic topology. Springer Science & Business Media, 1989.
〔43〕Nene, Sameer A., Shree K. Nayar, and Hiroshi Murase. "Columbia object image library
(coil-20)." (1996): 7.
〔44〕Deng, Li. "The mnist database of handwritten digit images for machine learning
research [best of the web]." IEEE signal processing magazine 29.6 (2012): 141-142.
〔45〕Xiao, Han, Kashif Rasul, and Roland Vollgraf. "Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms." arXiv preprint
arXiv:1708.07747 (2017).
〔46〕Das, Abhinandan S., et al. "Google news personalization: scalable online collaborative
filtering." Proceedings of the 16th international conference on World Wide Web. 2007.
〔47〕Gao, Shang-Hua, et al. "Res2net: A new multi-scale backbone architecture." IEEE
transactions on pattern analysis and machine intelligence 43.2 (2019): 652-662.
〔48〕Santos, Cicero dos, et al. "Attentive pooling networks." arXiv preprint
arXiv:1602.03609 (2016).
〔49〕Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual
connections on learning." Proceedings of the AAAI conference on artificial intelligence.
Vol. 31. No. 1. 2017.
〔50〕Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018.
〔51〕Nagrani, Arsha, Joon Son Chung, and Andrew Zisserman. "Voxceleb: a large-scale
speaker identification dataset." arXiv preprint arXiv:1706.08612 (2017).
〔52〕Carletta, Jean, et al. "The AMI meeting corpus: A pre-announcement." International
workshop on machine learning for multimodal interaction. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005.
〔53〕Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning
library." Advances in neural information processing systems 32 (2019).
〔54〕Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
〔55〕Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE, 2017.
〔56〕Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE, 2017.
〔57〕Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face
recognition." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019.
〔58〕The 2009 (RT-09) rich transcription meeting recognition eval- uation plan,”
http://www.itl.nist.gov/iad/mig/tests/rt/2009/docs/ rt09-meeting-eval-plan-v2.pdf, 2009.
〔59〕Wang, Weiqing, Xiaoyi Qin, and Ming Li. "Cross-channel attention-based target
speaker voice activity detection: Experimental results for the m2met challenge." ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022.
〔60〕Singh, Prachi, Amrit Kaul, and Sriram Ganapathy. "Supervised Hierarchical Clustering
Using Graph Neural Networks for Speaker Diarization." ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2023.
〔61〕Snyder, David, et al. "Speaker recognition for multi-speaker conversations using xvectors." ICASSP 2019-2019 IEEE International conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2019.
〔62〕Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural
networks 20.1 (2008): 61-80.
〔63〕Sztahó, Dávid, György Szaszák, and András Beke. "Deep learning methods in speaker
recognition: a review." arXiv preprint arXiv:1911.06615 (2019).
〔64〕Li, Hongze, et al. "Ultra-short-term load demand forecast model framework based on 〔55〕Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE, 2017.
〔56〕Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE, 2017.
〔57〕Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face
recognition." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019.
〔58〕The 2009 (RT-09) rich transcription meeting recognition eval- uation plan,”
http://www.itl.nist.gov/iad/mig/tests/rt/2009/docs/ rt09-meeting-eval-plan-v2.pdf, 2009.
〔59〕Wang, Weiqing, Xiaoyi Qin, and Ming Li. "Cross-channel attention-based target
speaker voice activity detection: Experimental results for the m2met challenge." ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022.
〔60〕Singh, Prachi, Amrit Kaul, and Sriram Ganapathy. "Supervised Hierarchical Clustering
Using Graph Neural Networks for Speaker Diarization." ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2023.
〔61〕Snyder, David, et al. "Speaker recognition for multi-speaker conversations using xvectors." ICASSP 2019-2019 IEEE International conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2019.
〔62〕Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural
networks 20.1 (2008): 61-80.
〔63〕Sztahó, Dávid, György Szaszák, and András Beke. "Deep learning methods in speaker
recognition: a review." arXiv preprint arXiv:1911.06615 (2019).
〔64〕Li, Hongze, et al. "Ultra-short-term load demand forecast model framework based on
〔65〕Desplanques, Brecht, Jenthe Thienpondt, and Kris Demuynck. "Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in tdnn based speaker
verification." arXiv preprint arXiv:2005.07143 (2020).
〔66〕From Louvain to Leiden: guaranteeing well-connected communities - Scientific Figure
on ResearchGate. [accessed 26 Jul, 2023]
〔67〕Manifold learning – scikit-learn 1.3.0 documentation
〔68〕How HDBSCAN works – hdbscan 0.8.1 documentation
指導教授 王家慶(Jia-Ching Wang) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明