博碩士論文 110522120 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.21.106.240
姓名 蔡姿瑩(TZU-YING TSAI)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一種基於紋理的白光結腸息肉圖像分類方法
(A Texture-Based Approach for White-Light Colon Polyp Image Classification)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 大腸癌是全球最普遍且致死率最高的惡性疾病之一,根據國民健康署癌症登記最新的資料顯示,我國大腸癌的發生人數已連續15年位居世界之首,平均每年都增加約1萬5、6千名新診斷患者。
大腸癌的發展與息肉的形成密切相關,因此透過內視鏡檢查來提早發現並進行息肉切除手術就可以有效預防大腸癌的發生。對於內視鏡醫生來說,是否能夠在檢查期間準確區分結腸息肉類型並做出明智的治療決策至關重要。
圖像增強內視鏡檢查技術,包含色素內視鏡檢查和窄帶成像,用於增強息肉表面的凹坑模式或微血管外觀,這些被強化的視覺特徵,例如:色素分布、血管密度、病變範圍和隆起程度等,能夠大幅提升醫生對結腸息肉類型的診斷能力。然而出於成本考量,窄帶成像內視鏡的普及性在某些臨床環境中可能會受到限制。
為了替內視鏡醫師提供更低的設備成本和有效的評估,並解決由白光息肉病變成像中紋理特徵模糊導致之卷積神經網絡模型預測能力有限的問題,本文提出了一種新的輸入特徵表示方法,該方法結合了紋理特徵、頻譜特徵和高提升濾波器,用於基於白光成像的結腸息肉多類分類。本文還提出了一個新的模型架構CBAMNet,通過結合CBAM與其他多項知名的正歸化技術,進一步提升了白光息肉分類的準確率。
實驗結果表明,本研究所提出的紋理特徵對 CNN 於白光息肉圖像之分類性能有著顯著的影響 (p<0.05),經由對測試資料進行5-Fold交叉驗證,我們所提出的特徵使得六個最先進的CNN模型的平均F1分數提升了14.0%。透過結合我們的方法和模型,我們成功地將白光下的多類別結腸息肉分類F1分數提高至87.0%。研究結果突出了結合紋理特徵對於提高結腸息肉白光成像分類準確率的重要性以及CBAMNet的分類潛力。
摘要(英) Colorectal cancer is one of the most common and deadliest malignancies worldwide. According to the latest data from the National Health Agency′s Cancer Registry, the incidence of colorectal cancer in Taiwan has been the highest in the world for 15 consecutive years, with an average increase of approximately 15,000~16,000 newly diagnosed patients each year. The development of colorectal cancer is closely related to the formation of polyps. Therefore, early detection and polypectomy through endoscopic examinations can effectively prevent the occurrence of colorectal cancer. For endoscopists, the ability to accurately differentiate colonic polyp types and make informed treatment decisions during examinations is crucial.
Image-enhanced endoscopic techniques, including chromoendoscopy and narrow-band imaging, are used to enhance the surface patterns or microvascular appearance of polyps. These enhanced visual features, such as pigment distribution, vascular density, lesion extent, and protrusion degree, can significantly improve the diagnostic capabilities of endoscopists in identifying colonic polyp types. However, the widespread use of narrow-band imaging endoscopy may be limited in certain clinical settings due to cost considerations.
To provide endoscopists with lower equipment costs and effective evaluations, and to address the limited predictive capabilities of convolutional neural network (CNN) models caused by the blurred texture features in white-light polyp imaging, this study proposes a novel input feature representation method. This method combines texture features, spectral features, and high-boost filters for multi-class classification of colonic polyps based on white-light imaging. Additionally, a new model architecture called CBAMNet is introduced, which further enhances the accuracy of white-light polyp classification by combining CBAM with other well-known normalization techniques.
Experimental results demonstrate that the texture features proposed in this study have a significant impact on the classification performance of CNN in white-light polyp images (p < 0.05). Through 5-fold cross-validation on the test data, our proposed features improve the average F1 score of six state-of-the-art CNN models by 14.0%. By combining our method and model, we successfully increase the multi-class colonic polyp classification F1 score to 87.0% under white-light conditions. The research findings highlight the importance of combining texture features to improve the accuracy of white-light colonic polyp imaging classification, as well as the classification potential of CBAMNet.
關鍵字(中) ★ 大腸癌
★ 醫學影像
★ 息肉分類
★ 白光成像
★ 灰度共生矩陣
★ 頻譜圖
★ 高提升濾波器
★ 電腦視覺
關鍵字(英) ★ Colorectal Cancer
★ Medical Imaging
★ Polyp Classification
★ White Light Imaging
★ Gray-level Co-occurrence Matrix
★ Spectrum Analysis
★ High-boost Filtering
★ Computer Vision
論文目次 摘要 v
Abstract vii
誌謝 ix
目錄 xi
一、 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 論文架構 4
二、 背景知識以及文獻回顧 5
2.1 背景知識 5
2.1.1 大腸癌的診斷與治療 5
2.1.2 大腸息肉的分類與特徵 6
2.1.3 大腸鏡的工作原理與技術發展 8
2.1.4 計算機輔助診斷與人工智慧 9
2.1.5 影像與色彩空間 10
2.2 文獻回顧 11
2.2.1 單獨使用 NBI 影像進行大腸息肉分類之研究 11
2.2.2 混合多種光源影像進行大腸息肉分類之研究 12
2.2.3 影像紋理特徵提取技術 14
2.2.4 將紋理特徵應用於醫學影像分類之研究 18
三、 研究方法 20
3.1 系統架構 20
3.2 資料集 21
3.2.1 公開資料集整合 21
3.2.2 WLI 與 NBI 影像分類器 22
3.3 資料前處理 23
3.3.1 使用高提升濾波器對白光影像進行頻率域增強 23
3.3.2 基於灰度共生矩陣的紋理特徵提取 24
3.3.3 使用離散餘弦轉換提取頻譜圖特徵 25
3.3.4 基於影像分塊集成決策方法 26
3.4 模型優化與組合 27
3.4.1 基於 AlexNet 的模型優化 27
3.4.2 基於 CBAM 的模型組合 29
3.5 模型訓練 31
3.6 基於白光影像的模型檢測與分類實時系統 32
四、 實驗設計與結果 38
4.1 優化 AlexNet 與原始架構在白光息肉分類上的性能比較 39
4.2 高提升濾波器及強化參數設置對模型性能之影響 40
4.3 紋理特徵選取實驗 41
4.3.1 紋理特徵對模型性能影響之探討 41
4.3.2 色彩空間對模型性能影響之探討 42
4.4 頻譜特徵選取實驗 44
4.4.1 不同頻譜特徵對模型性能之影響 44
4.4.2 從不同色彩空間提取頻譜特徵對模型性能之影響 46
4.5 特徵組合與模型性能比較 50
4.6 驗證本研究方法對多種知名 CNN 模型具有普適性 51
4.7 相關文獻比較 53
五、 總結 55
5.1 結論 55
5.2 未來展望 55
參考文獻 57
參考文獻 [1] 衛生福利部統計處. “每 31 分鐘 14 秒就有 1 名國人罹患大腸癌定期篩檢減少 29%
晚期大腸癌發生率,” 衛生福利部國民健康署. (Jan. 11, 2023), [Online]. Available:
https://www. hpa. gov.tw/Pages/Detail.aspx? nodeid= 4705& pid= 16548 (visited on
01/11/2023).
[2] S. J. Winawer, A. G. Zauber, M. N. Ho, et al., “Prevention of colorectal cancer by colonoscopic polypectomy,” New England Journal of Medicine, vol. 329, no. 27, pp. 1977–
1981, 1993.
[3] D. A. Lieberman, “Screening for colorectal cancer,” New England Journal of Medicine,
vol. 361, no. 12, pp. 1179–1187, 2009.
[4] 衛生福利部統計處. “國內首度「以 ai 偵測大腸瘜肉」準確率高達 95% 有效降
低大腸癌發生率,” 衛生福利部國民健康署. (Sep. 28, 2022), [Online]. Available:
https://www.healthnews.com.tw/article/55249 (visited on 09/28/2022).
[5] S. F. Pasha, J. A. Leighton, A. Das, et al., “Comparison of the yield and miss rate of
narrow band imaging and white light endoscopy in patients undergoing screening or
surveillance colonoscopy: A meta-analysis,” Official journal of the American College
of Gastroenterology| ACG, vol. 107, no. 3, pp. 363–370, 2012.
[6] M.-Y. Su, C.-M. Hsu, Y.-P. Ho, P.-C. Chen, C.-J. Lin, and C.-T. Chiu, “Comparative study
of conventional colonoscopy, chromoendoscopy, and narrow-band imaging systems in
differential diagnosis of neoplastic and nonneoplastic colonic polyps,” Official journal
of the American College of Gastroenterology| ACG, vol. 101, no. 12, pp. 2711–2716,
2006.
[7] K. Gono, T. Obi, M. Yamaguchi, et al., “Appearance of enhanced tissue features in
narrow-band endoscopic imaging,” Journal of biomedical optics, vol. 9, no. 3, pp. 568–
577, 2004.
[8] S.-E. Kudo, S. Tamura, T. Nakajima, H.-o. Yamano, H. Kusaka, and H. Watanabe, “Diagnosis of colorectal tumorous lesions by magnifying endoscopy,” Gastrointestinal endoscopy, vol. 44, no. 1, pp. 8–14, 1996
[9] A. Rastogi, J. Keighley, V. Singh, et al., “High accuracy of narrow band imaging without
magnification for the real-time characterization of polyp histology and its comparison
with high-definition white light colonoscopy: A prospective study,” Official journal of
the American College of Gastroenterology| ACG, vol. 104, no. 10, pp. 2422–2430, 2009.
[10] K. Suzuki, “A review of computer-aided diagnosis in thoracic and colonic imaging,”
Quantitative imaging in medicine and surgery, vol. 2, no. 3, p. 163, 2012.
[11] J. Tang, R. M. Rangayyan, J. Xu, I. El Naqa, and Y. Yang, “Computer-aided detection and
diagnosis of breast cancer with mammography: Recent advances,” IEEE transactions on
information technology in biomedicine, vol. 13, no. 2, pp. 236–251, 2009.
[12] M. C. Lee, L. Boroczky, K. Sungur-Stasik, et al., “Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble
construction,” Artificial intelligence in medicine, vol. 50, no. 1, pp. 43–53, 2010.
[13] A. Jalalian, S. B. Mashohor, H. R. Mahmud, M. I. B. Saripan, A. R. B. Ramli, and B.
Karasfi, “Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: A review,” Clinical imaging, vol. 37, no. 3, pp. 420–426, 2013.
[14] T. F. Alghazzawi, “Advancements in cad/cam technology: Options for practical implementation,” Journal of prosthodontic research, vol. 60, no. 2, pp. 72–84, 2016.
[15] H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning
in medical imaging: Overview and future promise of an exciting new technique,” IEEE
transactions on medical imaging, vol. 35, no. 5, pp. 1153–1159, 2016.
[16] E. Ribeiro, A. Uhl, G. Wimmer, and M. Häfner, “Exploring deep learning and transfer
learning for colonic polyp classification,” Computational and mathematical methods in
medicine, vol. 2016, 2016.
[17] Y. Komeda, H. Handa, T. Watanabe, et al., “Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: Preliminary experience,”
Oncology, vol. 93, no. Suppl. 1, pp. 30–34, 2017.
[18] Y. J. Kim, J. P. Bae, J.-W. Chung, D. K. Park, K. G. Kim, and Y. J. Kim, “New polyp
image classification technique using transfer learning of network-in-network structure in
endoscopic images,” Scientific Reports, vol. 11, no. 1, p. 3605, 2021.
[19] F. Younas, M. Usman, and W. Q. Yan, “A deep ensemble learning method for colorectal
polyp classification with optimized network parameters,” Applied Intelligence, vol. 53,
no. 2, pp. 2410–2433, 2023.
[20] R. Fonollá, F. van der Sommen, R. M. Schreuder, E. J. Schoon, and P. H. de With, “Multimodal classification of polyp malignancy using cnn features with balanced class augmentation,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019),
IEEE, 2019, pp. 74–78.
[21] N. J. Carr, H. Mahajan, K. L. Tan, N. J. Hawkins, and R. L. Ward, “Serrated and nonserrated polyps of the colorectum: Their prevalence in an unselected case series and
correlation of braf mutation analysis with the diagnosis of sessile serrated adenoma,”
Journal of clinical pathology, vol. 62, no. 6, pp. 516–518, 2009.
[22] M. J. Eshghi, R. Fatemi, A. Hashemy, D. Aldulaimi, and M. Khodadoostan, “A retrospective study of patients with colorectal polyps,” Gastroenterology and Hepatology from bed
to bench, vol. 4, no. 1, p. 17, 2011.
[23] L. Bujanda, A. Cosme, I. Gil, and J. I. Arenas-Mirave, “Malignant colorectal polyps,”
World journal of gastroenterology: WJG, vol. 16, no. 25, p. 3103, 2010.
[24] R. G. Prieto O, F. O. Mendivelso D, G. D. Carvajal P, J. N. Rocha R, and D. M. Aponte
M, “Endoscopic and histopathological characteristics of colorectal polyps resected endoscopically at a university institution in bogotá dc,” Revista colombiana de Gastroenterología, vol. 34, no. 1, pp. 31–37, 2019.
[25] D. J. Maron and R. D. Fry, “Premalignant polyps of the colon and rectum,” in General
Surgery.
[26] T. F. Imperiale, D. R. Wagner, C. Y. Lin, G. N. Larkin, J. D. Rogge, and D. F. Ransohoff,
“Risk of advanced proximal neoplasms in asymptomatic adults according to the distal
colorectal findings,” New England journal of medicine, vol. 343, no. 3, pp. 169–174,
2000.
[27] H. Brenner, M. Hoffmeister, C. Stegmaier, G. Brenner, L. Altenhofen, and U. Haug,
“Risk of progression of advanced adenomas to colorectal cancer by age and sex: Estimates based on 840 149 screening colonoscopies,” Gut, vol. 56, no. 11, pp. 1585–1589,
2007.
[28] P. Galiatsatos and W. D. Foulkes, “Familial adenomatous polyposis,” Official journal of
the American College of Gastroenterology| ACG, vol. 101, no. 2, pp. 385–398, 2006.
[29] C. B. Aarons, S. Shanmugan, and J. I. Bleier, “Management of malignant colon polyps:
Current status and controversies,” World Journal of Gastroenterology: WJG, vol. 20,
no. 43, p. 16 178, 2014.
[30] T. Sawicki, M. Ruszkowska, A. Danielewicz, E. Niedźwiedzka, T. Arłukowicz, and K. E.
Przybyłowicz, “A review of colorectal cancer in terms of epidemiology, risk factors,
development, symptoms and diagnosis,” Cancers, vol. 13, no. 9, p. 2025, 2021.
[31] T. F. Imperiale, D. R. Wagner, C. Y. Lin, G. N. Larkin, J. D. Rogge, and D. F. Ransohoff,
“Results of screening colonoscopy among persons 40 to 49 years of age,” New England
Journal of Medicine, vol. 346, no. 23, pp. 1781–1785, 2002.
[32] R. E. Schoen, P. F. Pinsky, J. L. Weissfeld, et al., “Colorectal-cancer incidence and
mortality with screening flexible sigmoidoscopy,” New England Journal of Medicine,
vol. 366, no. 25, pp. 2345–2357, 2012.
[33] D. K. Rex and C. C. Helbig, “High yields of small and flat adenomas with highdefinition colonoscopes using either white light or narrow band imaging,” Gastroenterology, vol. 133, no. 1, pp. 42–47, 2007.
[34] D. Ramsoekh, J. Haringsma, J. W. Poley, et al., “A back-to-back comparison of white
light video endoscopy with autofluorescence endoscopy for adenoma detection in highrisk subjects,” Gut, vol. 59, no. 6, pp. 785–793, 2010.
[35] A. Rastogi, D. S. Early, N. Gupta, et al., “Randomized, controlled trial of
standard-definition white-light, high-definition white-light, and narrow-band imaging
colonoscopy for the detection of colon polyps and prediction of polyp histology,” Gastrointestinal endoscopy, vol. 74, no. 3, pp. 593–602, 2011.
[36] N. Hayashi, S. Tanaka, D. G. Hewett, et al., “Endoscopic prediction of deep submucosal
invasive carcinoma: Validation of the narrow-band imaging international colorectal endoscopic (nice) classification,” Gastrointestinal endoscopy, vol. 78, no. 4, pp. 625–632,
2013.
[37] H. Osawa and H. Yamamoto, “Present and future status of flexible spectral imaging color
enhancement and blue laser imaging technology,” Digestive Endoscopy, vol. 26, pp. 105–
115, 2014.
[38] M. F. Gasia, S. Ghosh, R. Panaccione, et al., “Targeted biopsies identify larger proportions of patients with colonic neoplasia undergoing high-definition colonoscopy, dye
chromoendoscopy, or electronic virtual chromoendoscopy,” Clinical Gastroenterology
and Hepatology, vol. 14, no. 5, pp. 704–712, 2016.
[39] P. Lukes, M. Zabrodsky, J. Plzak, et al., “Narrow band imaging (nbi)—endoscopic
method for detection of head and neck cancer,” Endoscopy, vol. 5, pp. 75–87, 2013.
[40] M. A. Mazurowski, M. Buda, A. Saha, and M. R. Bashir, “Deep learning in radiology: An
overview of the concepts and a survey of the state of the art with focus on mri,” Journal
of magnetic resonance imaging, vol. 49, no. 4, pp. 939–954, 2019.
[41] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener,
“Histopathological image analysis: A review,” IEEE reviews in biomedical engineering,
vol. 2, pp. 147–171, 2009.
[42] M. Niemeijer, M. D. Abramoff, and B. Van Ginneken, “Information fusion for diabetic
retinopathy cad in digital color fundus photographs,” IEEE transactions on medical
imaging, vol. 28, no. 5, pp. 775–785, 2009.
[43] J.-G. Wittneben, R. F. Wright, H.-P. Weber, and G. O. Gallucci, “A systematic review of
the clinical performance of cad/cam single-tooth restorations.,” International journal of
prosthodontics, vol. 22, no. 5, 2009.
[44] H.-P. Chan, R. K. Samala, and L. M. Hadjiiski, “Cad and ai for breast cancer—recent development and challenges,” The British journal of radiology, vol. 93, no. 1108,
p. 20 190 580, 2019.
[45] M. Ansari, D. K. Singh, et al., “Significance of color spaces and their selection for image processing: A survey,” Recent Advances in Computer Science and Communications
(Formerly: Recent Patents on Computer Science), vol. 15, no. 7, pp. 946–956, 2022.
[46] CSDN. “彩色圖像–色彩空間 yiq 、yuv 、ycbcr 、yc1c2 和 i1i2i3,” CSDN. (Jul. 29,
2015), [Online]. Available: https:// blog . csdn . net/ weixin _ 33805992/ article/ details/
86208732 (visited on 07/29/2015).
[47] I. Racz, A. Horvath, N. Kranitz, G. Kiss, H. Regoczi, and Z. Horvath, “Artificial
intelligence-based colorectal polyp histology prediction by using narrow-band imagemagnifying colonoscopy,” Clinical Endoscopy, vol. 55, no. 1, p. 113, 2022.
[48] T. Shimizu, Y. Sasaki, K. Ito, M. Matsuzaka, H. Sakuraba, and S. Fukuda, “A trial deep
learning-based model for four-class histologic classification of colonic tumor from narrow band imaging,” Scientific Reports, vol. 13, no. 1, pp. 1–7, 2023.
[49] A. Kabra, Y. Iwahori, H. Usami, M. K. Bhuyan, N. Ogasawara, and K. Kasugai, “Polyp
classification and clustering from endoscopic images using competitive and convolutional neural networks.,” in ICPRAM, 2019, pp. 446–452.
[50] K. Patel, K. Li, K. Tao, et al., “A comparative study on polyp classification using convolutional neural networks,” PloS one, vol. 15, no. 7, e0236452, 2020.
[51] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621,
1973.
[52] R. Vyas, T. Kanumuri, G. Sheoran, and P. Dubey, “Co-occurrence features and neural
network classification approach for iris recognition,” in 2017 Fourth International Conference on Image Information Processing (ICIIP), IEEE, 2017, pp. 1–6.
[53] T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures
with classification based on kullback discrimination of distributions,” in Proceedings of
12th international conference on pattern recognition, IEEE, vol. 1, 1994, pp. 582–585.
[54] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), Ieee, vol. 1, 2005, pp. 886–893.
[55] T. J. Alhindi, S. Kalra, K. H. Ng, A. Afrin, and H. R. Tizhoosh, “Comparing lbp, hog and
deep features for classification of histopathology images,” in 2018 international joint
conference on neural networks (IJCNN), IEEE, 2018, pp. 1–7.
[56] P. K. Mall, P. K. Singh, and D. Yadav, “Glcm based feature extraction and medical x-ray
image classification using machine learning techniques,” in 2019 IEEE Conference on
Information and Communication Technology, IEEE, 2019, pp. 1–6.
[57] C.-M. Lo, Y.-H. Yeh, J.-H. Tang, C.-C. Chang, and H.-J. Yeh, “Rapid polyp classification
in colonoscopy using textural and convolutional features,” in Healthcare, MDPI, vol. 10,
2022, p. 1494.
[58] L. F. Sánchez-Peralta, J. B. Pagador, A. Picón, et al., “Piccolo white-light and narrowband imaging colonoscopic dataset: A performance comparative of models and datasets,”
Applied Sciences, vol. 10, no. 23, p. 8501, 2020.
[59] P. Mesejo, D. Pizarro, A. Abergel, et al., “Computer-aided classification of gastrointestinal lesions in regular colonoscopy,” IEEE transactions on medical imaging, vol. 35,
no. 9, pp. 2051–2063, 2016.
[60] K. Li, M. I. Fathan, K. Patel, et al., “Colonoscopy polyp detection and classification:
Dataset creation and comparative evaluations,” Plos one, vol. 16, no. 8, e0255809, 2021.
[61] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications.
McGraw-Hill New York, 1986, vol. 31999.
[62] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE transactions
on Computers, vol. 100, no. 1, pp. 90–93, 1974.
[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
2017.
[64] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proceedings of the 27th international conference on machine learning (ICML-10),
2010, pp. 807–814.
[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning, pmlr,
2015, pp. 448–456.
[66] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.
[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
[68] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proceedings of the European conference on computer vision (ECCV), 2018,
pp. 3–19.
[69] Q. Xu, Y. Xiao, D. Wang, and B. Luo, “Csa-mso3dcnn: Multiscale octave 3d cnn with
channel and spatial attention for hyperspectral image classification,” Remote Sensing,
vol. 12, no. 1, p. 188, 2020.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明