博碩士論文 108522090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.190.219.238
姓名 陳治平(Chih-Ping Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於Transformer模型之無壓脈帶血壓估測演算法
(A Cuffless Blood Pressure Estimation Algorithm Based on Transformer)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 基於 ARM 架構上的 ORB-SLAM2 的應用與改進
★ 基於深度學習之指數股票型基金趨勢預測★ 探討財經新聞與金融趨勢的相關性
★ 基於卷積神經網路的情緒語音分析★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現代社會中,心血管疾病是導致人類死亡的主要原因,而血壓的監測在預防、診斷、評估和治療疾病的過程中至關重要。傳統的血壓量測方法以示波法為主,此方法無法進行高頻率的血壓監測,更因為在量測期間須依靠壓脈帶對動脈施加壓力,進一步造成使用者的不適感。為了克服這些問題,並實現前所未有的便利性,許多研究利用穿戴式裝置中可取得的光體積變化描記圖(photoplethysmography,PPG)與心電圖訊號(electrocardiogram,ECG)進行血壓估測,實現無需壓脈帶的血壓監測方法。
本研究以深度學習方法中的Transformer模型為基礎,對光體積變化描記圖與心電圖訊號進行分析,以提取與血壓相關的特徵。為了更準確地呈現訊號中的局部資訊,我們將訊號切分成部分重疊的區塊,作為個別的Token輸入到模型中。同時,考慮到人與人之間生理訊號的差異,我們引入了校正程序,並額外納入年齡、性別、身高等資訊作為模型的參考依據。本研究在VitalDB資料集上進行實驗,此資料集包含1,437名病患的資料,我們提出的演算法在VitalDB測試集上的收縮壓平均誤差為 -0.11 ± 6.44 mmHg,舒張壓平均誤差為 -0.10 ± 4.07 mmHg,這些結果符合AAMI標準對於血壓量測設備的要求,進一步驗證了我們所提出演算法的有效性。
摘要(英) In modern society, cardiovascular disease is the leading cause of human deaths, and blood pressure monitoring is essential for prevention, diagnosis, assessment, and treatment. Traditional blood pressure measurement mainly relies on oscillometric method, which cannot achieve high-frequency blood pressure monitoring. Furthermore, these methods require the application of pressure on the artery using a cuff, which can cause discomfort to the user. In order to address these challenges and achieve unparalleled convenience, numerous studies have employed the use of photoplethysmography (PPG) and electrocardiogram (ECG) signals, which can be acquired from wearable devices, to estimate blood pressure. This advancement allows for cuffless blood pressure monitoring.
This study is based on the Transformer model, a deep learning method, to analyze signals from PPG and ECG for extracting blood pressure-related features. To accurately capture local semantic information in the signals, we partitioned the signals into partially overlapping patches, which were treated as individual tokens inputted into the model. Moreover, considering the variabilities observed among individuals in physiological signals, we incorporated a calibration procedure and additional information such as age, gender, and height as reference factors for the model. The effectiveness of the proposed algorithm was evaluated on VitalDB datasets, which consists of data from 1,437 patients. In the VitalDB test set, our algorithm achieved mean errors of -0.71 ± 6.91 mmHg for systolic blood pressure and -0.69 ± 4.22 mmHg for diastolic blood pressure, meeting the standards set by the Association for the Advancement of Medical Instrumentation (AAMI) for blood pressure measurement devices. These results further validate the efficacy of the algorithm proposed in this study.
關鍵字(中) ★ 無壓脈帶血壓估測 關鍵字(英) ★ Cuffless Blood Pressure Estimation
論文目次 中文摘要 i
Abstract ii
章節目次 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 背景 1
1.2 研究動機與目的 2
1.3 研究方法與章節概要 2
第二章 相關文獻及文獻探討 3
2.1 傳統血壓量測技術 3
2.2 無壓脈帶血壓估測 6
2.3 Transformer模型 11
第三章 無壓脈帶血壓估測演算法 15
3.1 資料前處理 15
3.2 模型架構 15
3.3 模型訓練 16
3.4 血壓校正 17
第四章 實驗結果與討論 19
4.1 資料集介紹 19
4.2 實驗設置與實作細節 20
4.3 實驗結果 21
4.3.1. 不同訊號組合的結果比較 21
4.3.2. 不同網路模型的結果比較 22
4.3.3. 不同校正方法的結果比較 22
4.3.4. AAMI標準 23
第五章 結論及未來方向 24
第六章 參考文獻 25
參考文獻 [1] C. D. Deakin, “Accuracy of the advanced trauma life support guidelines for predicting systolic blood pressure using carotid, femoral, and radial pulses: observational study,” BMJ, vol. 321, no. 7262, pp. 673–674, Sep. 2000, doi: 10.1136/bmj.321.7262.673.
[2] G. A. van Montfrans, “Oscillometric blood pressure measurement: progress and problems,” Blood Press Monit, vol. 6, no. 6, pp. 287–290, Dec. 2001, doi: 10.1097/00126097-200112000-00004.
[3] S. Ghaffari, M. Malaki, A. Rezaeifar, and S. Abdollahi Fakhim, “Effect of peripheral edema on cuff-based/oscillometric blood pressure measurements accuracy,” J Cardiovasc Thorac Res, vol. 6, no. 4, pp. 217–221, Dec. 2014, doi: 10.15171/jcvtr.2014.015.
[4] D. Zheng, L. Y. Di Marco, and A. Murray, “Effect of respiration on Korotkoff sounds and oscillometric cuff pressure pulses during blood pressure measurement,” Med Biol Eng Comput, Mar. 2014, doi: 10.1007/s11517-014-1150-1.
[5] S. K. Glen, H. L. Elliott, J. L. Curzio, K. R. Lees, and J. L. Reid, “White-coat hypertension as a cause of cardiovascular dysfunction,” The Lancet, vol. 348, no. 9028, pp. 654–657, Sep. 1996, doi: 10.1016/S0140-6736(96)02303-3.
[6] B. Gribbin, A. Steptoe, and P. Sleight, “Pulse Wave Velocity as a Measure of Blood Pressure Change,” Psychophysiology, vol. 13, no. 1, pp. 86–90, Jan. 1976, doi: 10.1111/j.1469-8986.1976.tb03344.x.
[7] Y. Kurylyak, F. Lamonaca, and D. Grimaldi, “A Neural Network-based method for continuous blood pressure estimation from a PPG signal,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, May 2013, pp. 280–283. doi: 10.1109/I2MTC.2013.6555424.
[8] M. Liu, L.-M. Po, and H. Fu, “Cuffless Blood Pressure Estimation Based on Photoplethysmography Signal and Its Second Derivative,” International Journal of Computer Theory and Engineering, vol. 9, no. 3, pp. 202–206, 2017, doi: 10.7763/IJCTE.2017.V9.1138.
[9] S. G. Khalid, J. Zhang, F. Chen, and D. Zheng, “Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches,” J Healthc Eng, vol. 2018, pp. 1–13, Oct. 2018, doi: 10.1155/2018/1548647.
[10] X. Xing and M. Sun, “Optical blood pressure estimation with photoplethysmography and FFT-based neural networks,” Biomed Opt Express, vol. 7, no. 8, p. 3007, Aug. 2016, doi: 10.1364/BOE.7.003007.
[11] L. A. Geddes, M. H. Voelz, C. F. Babbs, J. D. Bourland, and W. A. Tacker, “Pulse Transit Time as an Indicator of Arterial Blood Pressure,” Psychophysiology, vol. 18, no. 1, pp. 71–74, Jan. 1981, doi: 10.1111/j.1469-8986.1981.tb01545.x.
[12] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method,” Eur J Appl Physiol, vol. 112, no. 1, pp. 309–315, Jan. 2012, doi: 10.1007/s00421-011-1983-3.
[13] C. C. Y. Poon and Y. T. Zhang, “Cuff-less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, 2005, pp. 5877–5880. doi: 10.1109/IEMBS.2005.1615827.
[14] M. Y.-M. Wong, C. C.-Y. Poon, and Y.-T. Zhang, “An Evaluation of the Cuffless Blood Pressure Estimation Based on Pulse Transit Time Technique: a Half Year Study on Normotensive Subjects,” Cardiovascular Engineering, vol. 9, no. 1, pp. 32–38, Mar. 2009, doi: 10.1007/s10558-009-9070-7.
[15] X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang, “Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation,” Sci Rep, vol. 7, no. 1, p. 11554, Sep. 2017, doi: 10.1038/s41598-017-11507-3.
[16] M. Sharma et al., “Cuff-Less and Continuous Blood Pressure Monitoring: A Methodological Review,” Technologies (Basel), vol. 5, no. 2, p. 21, May 2017, doi: 10.3390/technologies5020021.
[17] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, May 2015, pp. 1006–1009. doi: 10.1109/ISCAS.2015.7168806.
[18] Z. Shen, F. Miao, Q. Meng, and Y. Li, “Cuffless and continuous blood pressure estimation based on multiple regression analysis,” in 2015 5th International Conference on Information Science and Technology (ICIST), IEEE, Apr. 2015, pp. 117–120. doi: 10.1109/ICIST.2015.7288952.
[19] P. Su, X.-R. Ding, Y.-T. Zhang, J. Liu, F. Miao, and N. Zhao, “Long-term blood pressure prediction with deep recurrent neural networks,” in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), IEEE, Mar. 2018, pp. 323–328. doi: 10.1109/BHI.2018.8333434.
[20] Md. S. Tanveer and Md. K. Hasan, “Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network,” Biomed Signal Process Control, vol. 51, pp. 382–392, May 2019, doi: 10.1016/j.bspc.2019.02.028.
[21] M. Saeed et al., “Multiparameter Intelligent Monitoring in Intensive Care II: A public-access intensive care unit database*,” Crit Care Med, vol. 39, no. 5, pp. 952–960, May 2011, doi: 10.1097/CCM.0b013e31820a92c6.
[22] M. Gurven, A. D. Blackwell, D. E. Rodríguez, J. Stieglitz, and H. Kaplan, “Does Blood Pressure Inevitably Rise With Age?,” Hypertension, vol. 60, no. 1, pp. 25–33, Jul. 2012, doi: 10.1161/HYPERTENSIONAHA.111.189100.
[23] S. C. Millasseau et al., “Noninvasive Assessment of the Digital Volume Pulse,” Hypertension, vol. 36, no. 6, pp. 952–956, Dec. 2000, doi: 10.1161/01.HYP.36.6.952.
[24] J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol Meas, vol. 28, no. 3, pp. R1–R39, Mar. 2007, doi: 10.1088/0967-3334/28/3/R01.
[25] X. F. Teng and Y. T. Zhang, “Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), IEEE, pp. 3153–3156. doi: 10.1109/IEMBS.2003.1280811.
[26] G. B. Moody and R. G. Mark, “A database to support development and evaluation of intelligent intensive care monitoring,” in Computers in Cardiology 1996, IEEE, pp. 657–660. doi: 10.1109/CIC.1996.542622.
[27] C. Sideris, H. Kalantarian, E. Nemati, and M. Sarrafzadeh, “Building Continuous Arterial Blood Pressure Prediction Models Using Recurrent Networks,” in 2016 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE, May 2016, pp. 1–5. doi: 10.1109/SMARTCOMP.2016.7501681.
[28] A. E. W. Johnson et al., “MIMIC-III, a freely accessible critical care database,” Sci Data, vol. 3, no. 1, p. 160035, May 2016, doi: 10.1038/sdata.2016.35.
[29] G. Slapničar, N. Mlakar, and M. Luštrek, “Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network,” Sensors, vol. 19, no. 15, p. 3420, Aug. 2019, doi: 10.3390/s19153420.
[30] M. Sadrawi et al., “Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography,” Sensors, vol. 20, no. 14, p. 3829, Jul. 2020, doi: 10.3390/s20143829.
[31] A. Vaswani et al., “Attention Is All You Need,” Jun. 2017.
[32] Y. Liang, M. Elgendi, Z. Chen, and R. Ward, “An optimal filter for short photoplethysmogram signals,” Sci Data, vol. 5, no. 1, p. 180076, May 2018, doi: 10.1038/sdata.2018.76.
[33] M. Elgendi et al., “The use of photoplethysmography for assessing hypertension,” NPJ Digit Med, vol. 2, no. 1, p. 60, Jun. 2019, doi: 10.1038/s41746-019-0136-7.
[34] B. Huang, W. Chen, C.-L. Lin, C.-F. Juang, and J. Wang, “MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networks,” Biomed Signal Process Control, vol. 73, p. 103404, Mar. 2022, doi: 10.1016/j.bspc.2021.103404.
[35] T. Athaya and S. Choi, “An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach,” Sensors, vol. 21, no. 5, p. 1867, Mar. 2021, doi: 10.3390/s21051867.
[36] G. Slapničar, N. Mlakar, and M. Luštrek, “Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network,” Sensors, vol. 19, no. 15, p. 3420, Aug. 2019, doi: 10.3390/s19153420.
[37] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A Time Series is Worth 64 Words: Long-term Forecasting with Transformers,” Nov. 2022.
[38] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Oct. 2020.
[39] L. Liu et al., “On the Variance of the Adaptive Learning Rate and Beyond,” Aug. 2019.
[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” Jul. 2012.
[41] H.-C. Lee, Y. Park, S. Bin Yoon, S. M. Yang, D. Park, and C.-W. Jung, “VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients,” Sci Data, vol. 9, no. 1, p. 279, Jun. 2022, doi: 10.1038/s41597-022-01411-5.
[42] G. S. Stergiou et al., “A Universal Standard for the Validation of Blood Pressure Measuring Devices,” Hypertension, vol. 71, no. 3, pp. 368–374, Mar. 2018, doi: 10.1161/HYPERTENSIONAHA.117.10237.
[43] R. Mukkamala et al., “Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals,” Hypertension, vol. 78, no. 5, pp. 1161–1167, Nov. 2021, doi: 10.1161/HYPERTENSIONAHA.121.17747.
[44] W. Wang, P. Mohseni, K. L. Kilgore, and L. Najafizadeh, “PulseDB: A large, cleaned dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood pressure estimation methods,” Front Digit Health, vol. 4, Feb. 2023, doi: 10.3389/fdgth.2022.1090854.
[45] I. Tolstikhin et al., “MLP-Mixer: An all-MLP Architecture for Vision,” May 2021.
[46] B. Lee, J.-H. Jeong, J. Hong, and Y.-H. Park, “Correlation analysis of human upper arm parameters to oscillometric signal in automatic blood pressure measurement,” Sci Rep, vol. 12, no. 1, p. 19763, Nov. 2022, doi: 10.1038/s41598-022-24264-9.
[47] G. Martínez, N. Howard, D. Abbott, K. Lim, R. Ward, and M. Elgendi, “Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure?,” J Clin Med, vol. 7, no. 10, p. 316, Sep. 2018, doi: 10.3390/jcm7100316.
[48] J. Park, H. S. Seok, S.-S. Kim, and H. Shin, “Photoplethysmogram Analysis and Applications: An Integrative Review,” Front Physiol, vol. 12, Mar. 2022, doi: 10.3389/fphys.2021.808451.
[49] A. Ghosh, S. Sarkar, and J. Kalra, “Schr"odinger Spectrum based Continuous Cuff-less Blood Pressure Estimation using Clinically Relevant Features from PPG Signal and its Second Derivative,” Jan. 2023.
指導教授 王家慶(Jia-Ching Wang) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明