博碩士論文 110521077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.84.47
姓名 簡佑宸(Yu-Chen Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制
(Intelligent Backstepping Control of Permanent Magnet Assisted Synchronous Reluctance Motor Position Servo Drive with Recurrent Wavelet Fuzzy Neural Network)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究的目標是開發一種用於永磁輔助同步磁阻電機(PMASynRM)的智慧型伺服驅動系統,該系統能夠適應電機的非線性和時變控制要求。為此,提出了一種具有智慧型步階回歸控制的遞迴小波模糊神經網路(RWFNN)。首先,引入ANSYS Maxwell-2D動態模型來控制PMASynRM驅動器的最大每安培扭矩(MTPA)。根據有限元分析(FEA)結果創建查找表(LUT),以確定 MTPA內的當前指令角。接下來,開發了基於步階回歸(BSC)的系統來跟踪位置命令。然而,由於事先無法獲得不確定性訊息,為PMASynRM位置伺服驅動系統的實際應用設計有效的BSC具有挑戰性。因此,本研究提出了一種 RWFNN 來近似 BSC,並減輕了與使用傳統 BSC 相關的上述困難。 改進的自適應補償器被添加到 RWFNN 以解決潛在的近似誤差。為保證RWFNN的穩定性,採用Lyapunov穩定性方法生成RWFNN的在線學習算法並保證漸近穩定性。實驗結果證明了所提出的 IBSCRWFNN 控制的 PMASynRM 驅動器的有效性和強健性。最後,本研究採用32位元浮點運算數位訊號處理器TMS320F28075,以實現所提出的智慧型控制於永磁輔助同步磁阻馬達驅動系統中。
摘要(英) The goal of this study is to develop an intelligent servo drive system for a permanent magnet assisted synchronous reluctance motor (PMASynRM) that can adapt to the motor′s nonlinear and time-varying control requirements. To achieve this, a recurrent wavelet fuzzy neural network (RWFNN) with intelligent backstepping control is proposed. First, an ANSYS Maxwell-2D dy-namic model is introduced to control the maximum torque per ampere (MTPA) of the PMASynRM servo drive. A lookup table (LUT) is created based on finite element analysis (FEA) results to determine the current angle of command within the MTPA. Next, a system based on backstepping control (BSC) is developed to track the position reference. However, designing an effective BSC for practical applications of the PMASynRM position servo drive system is chal-lenging due to the unavailability of uncertainty information in advance. Therefore, this study proposes an RWFNN to approximate the BSC and alleviate the above difficulties associated with using a traditional BSC. An improved adaptive compensator is added to the RWFNN to address potential approximation errors. To ensure the stability of the RWFNN, the Lyapunov stability method is used to generate the RWFNN′s online learning algorithms and guarantee asymptotic stability. Experimental results demonstrate the effectiveness and robustness of the proposed in-telligent backstepping control recurrent wavelet fuzzy neural network (IBSCRWFNN) controlled PMASynRM servo drive.
Finally, the intelligent control system and the vector mechanism for the PMASynRM drive are successfully implemented utilizing the TMS320F28075, a 32-bit floating point digital signal processor (DSP)
關鍵字(中) ★ 永磁輔助同步磁阻馬達
★ 每安培最大轉矩
★ 有限元素分析
★ 步階回歸控制
★ 遞迴小波模糊類神經網路
關鍵字(英) ★ permanent magnet assisted synchronous reluctance motor (PMASynRM)
★ maximum torque per ampere (MTPA)
★ finite element analysis (FEA)
★ backstepping control (BSC)
★ intelligent backstepping control recurrent wavelet fuzzy neural network (IBSCRWFNN)
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 論文貢獻 6
1.4 論文大綱 7
第二章 永磁輔助同步磁阻馬達之控制板和驅動系統之控制板介紹 8
2.1 前言 8
2.2 TMS320F28075數位訊號處理器簡介 10
2.3 TMS320F28075數位訊號處理器控制板之電路 11
2.3.1 電壓源轉換電路 12
2.3.2 數位/類比轉換電壓準位轉換電路 13
2.4 輸入/輸出板之電路 13
2.4.1 ADC輸入腳位之過電流保護電路 14
2.4.2 過電流保護電路 15
2.4.3 數位/類比轉換電路 17
2.5 外部負載控制電路 17
2.6 功率級系統建構 20
2.6.1 前言 20
2.6.2 電容板設計 20
2.6.3 主功率級設計 21
2.6.4 閘級驅動設計 22
2.6.5 米勒箝位驅動原理 23
第三章 永磁輔助同步磁阻馬達驅動系統 26
3.1 前言 26
3.2 永磁輔助同步磁阻馬達 28
3.3 永磁輔助同步磁阻馬達數學動態模型與三相座標轉換 29
3.3.1 永磁輔助同步磁阻馬達在abc座標系下之數學模型 32
3.3.2 永磁輔助同步磁阻馬達在 座標系下之數學模型 34
3.3.3 永磁輔助同步磁阻馬達在dq座標系下之數學模型 37
3.3.4 永磁輔助同步磁阻馬達反電動勢定義 40
3.4 永磁輔助同步磁阻馬達對位方法 42
3.5 增量型編碼器位置迴授和速度估算 44
3.6 永磁輔助同步磁阻馬達控制架構 44
3.6.1 有限元素分析每安培最大轉矩控制 44
3.6.2 比例積分、步階回歸和利用遞迴小波模糊類神經網路之智慧型步階遞迴控制 45
3.6.3 電流比例積分控制器之設計 47
3.6.4 速度比例積分控制器之設計 49
3.6.5 位置比例控制器之設計 51
第四章 永磁輔助同步磁阻馬達步階回歸控制 53
4.1 前言 53
4.2 步階回歸控制原理 53
4.3 步階回歸控制穩定性證明 55
第五章 永磁輔助同步磁阻馬達利用遞迴小波模糊類神經網路之智慧型步階回歸控制 57
5.1 前言 57
5.2 利用遞迴小波模糊類神經網路之智慧型步階回歸控制系統 57
5.3 遞迴小波模糊類神經網路之架構 58
5.4 遞迴小波模糊類神經網路穩定性證明 62
第六章 永磁輔助同步磁阻馬達之有限元素分析 69
6.1 前言 69
6.2 建立永磁輔助同步磁阻馬達有限元素分析模型 70
6.2.1 Maxwell 2D 模型建立永磁輔助同步磁阻馬達 71
6.2.2 ANSYS功能設定 72
6.3 Simplorer 模擬分析 75
6.3.1 ECE簡介 75
6.3.2 ECE建模設定 76
6.3.3 比例積分控制、步階回歸控制與利用遞迴小波模糊類神經網路之智慧型步階回歸控制模擬結果 78
第七章 實驗結果與討論 85
7.1 前言 85
7.2 實驗結果 86
7.3 實驗結果之討論 96
第八章 結論與未來展望 99
8.1 結論 99
8.2 未來展望 99
參考文獻 100
作者簡歷 108
參考文獻 [1] P. Waide and C. U. Brunner, “Energy-Efficiency policy opportunities for electric motor-drive systems,” Paris, France: International Energy Agency, 2011.
[2] A. T. D. Almeida, F. J. T. E. Ferreira and G. Baoming, “Beyond Induction Motors Technology Trend to Move up Efficiency,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2103-2114, May. 2014.
[3] A. Komura, Hitachi, “Development of IES High Efficiency Motor with Iron-base Amorphous Magnetic Cores,” 2015. 檢自:
http://docplayer.net/52943274-Development-of-ie5-high-efficiency-motor-with-iron-base-amorphous-magnetic-cores.html
[4] Drive and control, “Siemens Enters the Synchronous Reluctance Fray.” 2015. 檢自:
https://drivesncontrols.com/news/fullstory.php/aid/4735/Siemens_enters the_synchronous_reluctance fray.html
[5] ABB, “Synchronous Reluctance Motor-drive Package for Machine Builders,” 2014. 檢自:
https://search.abb.com/library/Download.aspx?DocumentID=3AUA0000120962&LanguageCode=en&DocumentPartId=1&Action=Launch
[6] G. Pellegrino, A. Vagati and P. Guglielmi, “Design Tradeoffs between Constant Power Speed Range, Uncontrolled Generator Operation, and Rated Current of IPM Motor Drives,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 1995-2003, Oct. 2011.
[7] P. Niazi, H. A. Toliyat, Dal-Ho Cheong and Jung-Chul Kim, “A low-cost and efficient permanent magnet assisted synchronous reluctance motor drive,” IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, pp. 659-666, 2005.
[8] H. Cai, B. Guan and L. Xu, “Low-Cost Ferrite PM-Assisted Synchronous Reluctance Machine for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5741- 5748, 2014.
[9] R. Vartanian, H. A. Toliyat, B. Akin and R. Poley, “Power factor improvement of synchronous reluctance motors (SynRM) using permanent magnets for drive size reduction,” 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, pp. 628-633, 2012.
[10] EMACH, Ultra Premium Efficiency (IE5) PM-assisted Synchronous Reluctance Motors. 檢自:
http://emach.ru/ieS-pm-assisted/
[11] R. Vartanian, Y. Deshpande, and H. Toliyat, “Performance Analysis of a
Ferrite Based Fractional Horsepower Permanent Magnet Assisted SynRM for Fan and Pump Applications,” Proc. of the Int. Conf. on Electric Machines and Drives Conf., pp. 1405–1410, 2013.
[12] S. Taghavi and P. Pillay, “A Sizing Methodology of the Synchronous Reluctance Motor for Traction Applications,” IEEE J. Emerging Sel. Top. Power Electron., vol. 2, no. 2, pp. 329-340, June 2014.
[13] H. Mahmoud and N. Bianchi, “Eccentricity in Synchronous Reluctance Motors -Part I: Analytical and Finite-Element Models,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 745-753, June 2015.
[14] H. Mahmoud and N. Bianchi, “Eccentricity in Synchronous Reluctance Motors-_Part II: Different Rotor Geometry and Stator Windings,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 754-760, June 2015.
[15] J. Lara, J. Xu, and A. Chandra, “Effects of rotor position error in the performance of field-oriented-controlled PMSM drives for electric vehicle traction applications,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4738– 4751, Aug. 2016.
[16] Y. Yang et al., “Design and comparison of interior permanent magnet motor topologies for traction applications,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 86–97, Oct. 2017.
[17] S. Fang, H. Liu, H. Wang, H. Yang, and H. Lin, “High power density PMSM with lightweight structure and high-performance soft magnetic alloy core,” IEEE Trans. Appl. Supercond., vol. 29, no. 2, Mar. 2019, Art. no. 0602805.
[18] Y. Kong, M. Lin and L. Jia, “A Novel High Power Density Permanent-Magnet Synchronous Machine With Wide Speed Range,” IEEE Trans Magn, vol. 56, no. 2, pp. 1-6, Feb. 2020, Art no. 7505206.
[19] S. Park, E. Lee, J. Park, S. Hwang, and M. Lim, “Prediction of mechanical loss for high power density PMSM considering eddy current loss of PMs and conductors,” IEEE Trans. Magn., vol. 57, no. 2, Feb. 2021, Art. no. 6300205.
[20] N. Bedetti, S. Calligaro, and R. Petrella, “Stand-still self-identification of flux characteristics for synchronous reluctance machines using novel saturation approximating function and multiple linear regression,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3083–3092, Jul. 2016.
[21] B. Nikmaram, S. A. Davari, P. Naderi, C. Garcia, and J. Rodriguez, “Sensorless simplified finite control set model predictive control of SynRM using finite position set algorithm,” IEEE Access, vol. 9, pp. 47184–47193, 2021.
[22] S. Taghavi and P. Pillay, “Mechanically robust rotor with transverselaminations for a wide speed range synchronous reluc-tance traction motor,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 329–340, Nov./Dec. 2015.
[23] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[24] B. Kerdsup, N. Takorabet, and B. Nahidmobarakeh, “Design of permanent magnet-assisted synchronous reluctance motors with maximum efficiency-power factor and torque per cost,” 2018 XIII International Conference on Electrical Machines (ICEM), 2018.
[25] S. Ooi, S. Morimoto, M. Sanada, and Y. Inoue, ‘‘Performance evaluation of a high-power-density PMASynRM with ferrite magnets,’’ IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1308–1315, May 2013.
[26] R. Nasiri-Zarandi, A. Karami-Shahnani, S. Member, M. Sedigh Toulabi, S. Member, and A. Tessarolo, “Design and Experi-mental Performance Assessment of an Outer Rotor PM Assisted SynRM for the Electric Bike Propulsion,” IEEE Transactions on Transportation Electrification, pp. 1–1, 2022.
[27] M. Obata, S. Morimoto, M. Sanada, and Y. Inoue, “Performance of PMASynRM with ferrite magnets for EV/HEV applica-tions considering productivity,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2427–2435, Jul./Aug. 2014.
[28] Y. Yu, Z. Mi, X. Zheng, D. Chang, X. Zheng, and C. Sun, “Adaptive sliding mode backstepping control-based maximum torque per ampere control of permanent magnet-assisted synchronous reluctance motor via nonlinear disturbance observer,” Adv. Mech. Eng., vol. 10, pp. 1–12, Jul. 2018.
[29] K. Li and Y. Wang, “Maximum torque per ampere (MTPA) control for IPMSM drives based on a varia-ble-equivalent-parameter MTPA control law,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 7092–7102, Jul. 2019.
[30] F. J. Lin, Y. T. Liu and W. A. Yu, “Power Perturbation Based MTPA With an Online Tuning Speed Controller for an IPMSM Drive System,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3677-3687, May 2018.
[31] K. Li and Y. Wang, “Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law,” IEEE Trans. Ind. Informat., vol. 15, no. 10, pp. 5588–5598, Oct. 2019.
[32] T. H. Liu, H. T. Pu, and C. K. Lin, “Implementation of an adaptive position control system of a permanent-magnet syn-chronous motor and its application,” IET Electr. Power Appl., vol. 4, pp. 121–130, 2010.
[33] M. M. Mansouri, S. Hadjeri, and M. Brahami, “New method of detection, identification, and elimination of photovoltaic system faults in real time based on the adaptive neuro-fuzzy system,” IEEE J. Photovolt., vol. 11, no. 3, pp. 797–805, May 2021.
[34] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network-inherited backstepping control for robot manipulator in-cluding actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[35] S. Y. Chen and T. S. Liu, “Intelligent tracking control of a permanent magnet linear synchronous motor using self-evolving probabilistic fuzzy neural network,” IET Electr. Power Appl., vol. 11, no. 6, pp. 1043–1054, Jul. 2017.
[36] F. J. Lin, I. F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[37] J. Fei, Y. Chen, L. Liu and Y. Fang, “Fuzzy Multiple Hidden Layer Recurrent Neural Control of Nonlinear System Using Terminal Sliding-Mode Controller,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9519-9534, Sept. 2022.
[38] M. A. Khan, M. N. Uddin, and M. A. Rahman, “A novel wavelet-neural network-based robust controller for IPM motor drives,” IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2341–2351, Sep./Oct. 2013.
[39] W. Huang, S. Oh, and W. Pedrycz, “Fuzzy wavelet polynomial neural networks: Analysis and design,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1329–1341, Oct. 2017.
[40] F. J. Lin, K. H. Tan, W. C. Luo, and G. D. Xiao, ‘‘Improved LVRT performance of PV power plant using recurrent wavelet fuzzy neural network control for weak grid conditions,’’ IEEE Access, vol. 8, pp. 69346–69358, 2020.
[41] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[41] TMS320F2807x Microcontrollers Technical Ref Manual, Texas Instruments. 檢自:
https://www.ti.com/lit/ug/spruhm9f/spruhm9f.pdf?ts=1687835637537&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fzh-tw%252FTMS320F28075
[43] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制 六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系, 民國一百零五年。
[44] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
檢自:
https://www.ti.com/lit/ds/symlink/tms320f28075.pdf?ts=1687835640037
&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fzh-
tw%252FTMS320F28075
[45] Z. Chen, D. Boroyevich, P. Mattavelli and K. Ngo, “A frequency-domain study on the effect of DC-link decoupling capacitors,” 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, pp. 1886-1893, 2013.
[46] L. Salvo, M. Pulvirenti, A. G. Sciacca, G. Scelba and M. Cacciato, “Gate-Source Voltage Analysis for Switching Crosstalk Evaluation in SiC MOSFETs Half-Bridge Converters,” 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, pp. 5440-5446, 2021.
[47] UCC5350 - Isolated Gate Drivers Datasheet - Texas Instruments Datasheet.
檢自: https://www.ti.com/lit/ds/symlink/ucc5350.pdf?ts=1687835865737&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fzh-tw%252FUCC5350
[48] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[49] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[50] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[51] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extented electromotive force,” Proc. IECON 2000, pp. 1814-1819, 2000.
[52] D. L. Logan, A First Course in the Finite Element Method, MA: Cengage Learning, 2017.
[53] A. Karvonen and T. Thiringer, “Co-simulation and harmonic analysis of a hybrid vehicle traction system, ” 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015.
[54] J. Wei, J. Chen, P. Liu and B. Zhou, “The optimized triloop control strategy of integrated motor-drive and battery-charging system Based on the split-field-winding doubly salient electromagnetic machine in driving mode,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1769-1779, Feb. 2021.
[55] P. Kumar N. and T. B. Isha, “FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor, “CES Trans. Electr. Mach. Syst., vol. 3, no. 3, pp. 309-315, Sept. 2019.
[56] A. K. Singh, P. Kumar, C. U. Reddy and K. Prabhakar, “Simulation of direct torque control of induction motor using Simulink, simplorer and maxwell software,” 2015 IEEE International Transport. Electrific. Conference (ITEC), pp. 1-6, 2015.
[57] M. Jafarboland, M. Tashakorian and A. Shirzadi, “Simulation of electrical motor drive using simulink, simplorer and maxwell software,” 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 808-813, 2014.
[58] Alan Chen, “Introduction of ECE model in maxwell reduce order model generation for PMSM,” Mar. 2018.
[59] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[60] T. H. Liu, H. T. Pu, and C. K. Lin, “Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application,” IET Elect. Power Appl., vol. 4, no. 2, pp. 121–130, Feb. 2010.
[61] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明