摘要(英) |
Due to the advancement of technology in recent years, more and more people are pursuing higher resolution picture quality, so the multimedia output also uses higher resolution products, therefore, in order to effectively compress the huge amount of data of such high resolution video, HEVC (High Efficiency Video Coding) uses more newer technologies than the previous generation of H.264 to reduce the bit rate of encoding, such as: intra-prediction,inter-prediction,rate distortion optimization,However, it also increases the complexity of the coding calculation that is the time spent.
In this paper, we use CNN (Convolutional Neural Network) and SVM (Support Vector Machine) in deep learning to apply the information from PU to the decision of HEVC coding unit (CU) stage. We use SVM to differentiate the coding units at the beginning of coding, and classify a CTU into four categories: depth 0, depth 0~1, depth 0~2, and depth 0~3, and then use the convolutional neural network to subdivide the CU0 in layers, and separate the CU0. Finally, use the features of CU and PU to decide whether to terminate the depth division early and whether the PU decides the mode early. This saves the computation time required for subsequent depths and achieves code-side reduction. The final experimental results show that, compared with standard HEVC, the overall average BDBR increases by 1.64% and the encoding time can be saved by about 71.1%.
|
參考文獻 |
[1] “Video coding for low bit rate communication, version 1,” ITU-T recommendation H.263, 1995.
[2] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
[3] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han and Thomas Wiegand, “Overview of the high efficiency video coding (HEVC) Standard,” in Proc. IEEE Transactions on circuits and systems for video technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
[4] L. Zhao, X. Guo, S. Lei, S. Ma and D. Zhao, “Simplified AMVP for high efficiency video coding,” in Proc. IEEE ICIP, pp. 1-4, 27-30 Nov. 2012.
[5] Y. Ismail and S. El-etriby, “Fast diamond search algorithm for real time video coding,” in Proc. IEEE ICNC, pp. 729-733, Feb. 2012.
[6] K. Kim and W. W. Ro, "Fast CU depth decision for HEVC using neural networks", IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 5, pp. 1462-1473, May 2019.
[7] D.H Yang“SVM/CNN-based CTU Partition for HEVC Inter Prediction” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., Jan 2021.
[8] J.K. Liu, “Efficient HEVC inter prediction using SVM,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C.
[9] J. L. Lin, Y. W. Chen, Y. W. Huang, and S. M. Lei, “Motion vector coding in the HEVC standard,” in Proc. IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 957-968, 3 July 2013.
[10] Y.D Tsai, “Research on Fast HEVC Inter Prediction Coding” National Central University, National Central University, Taiwan 32054, R.O.C., Jan 2019.
|