博碩士論文 109353007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.216.19.68
姓名 彭武釧(Wu-Chuan Peng)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 高功率超音波振動輔助線切割放電加工SiC材料之研究
(A Study on High-Power Ultrasonic Vibration-Assisted Wire Electrical Discharge Machining on SiC)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
★ 超音波輔助磨削AGC玻璃加工之研究★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本論文為使用高功率超音波輔助振動線電極,對SiC晶圓工件進行線切割放電切槽加工研究,並探討線切割加工參數如開路電壓、超音波功率、線張力段數、SiC晶圓厚度等,於加工品質特性包括有加工時間、材料移除率及加工槽寬度等,以及進行加工後熱影響區深度量測,並探討有、無超音波輔助加工對SiC晶圓材料之影響。
實驗結果顯示,在SiC晶圓工件厚度為0.42mm時,無超音波輔助加工結果是優於有超音波輔助,原因在於無超音波輔助情形下,線電極側向振動較小,使得放電現象集中於線電極的行進方向,故不會造成側向放電頻率增加,線電極於加工區停留時間較短,在適當的加工參數下,相較於有超音波輔助加工時,加工槽寬度減少了約8%,加工時間縮短了約22%,料移除率增加了約12%。
當採用SiC晶圓工件厚度為10.0mm進行加工實驗時,有超音波輔助加工結果是優於無超音波輔助,原因係在於超音波輔助振動線電極時,線電極振動可加速放電渣的排除,因此減少了集中放電現象,故在加工較厚之SiC晶圓工件時,採用超音波輔助及選用適當的加工參數下,相較於無超音波輔助加工時,加工槽寬度減少了約10%,加工時間縮短了約13%,材料移除率增加了約8%,且熱影響深度更淺,並能夠獲得的最小熱影響深度為2μm。
摘要(英) This study employed high-power ultrasonic vibration-assisted wire electrical discharge machining for creating grooves on SiC wafers. The influence of processing parameters open voltage, ultrasonic power level, wire tension level, and SiC wafer thickness on the machining time, material removal rate, and kerf width was investigated. Furthermore, the depth of the heat-affected zones was measured after the processing, and the effects of ultrasonic vibration-assisted processing and processing without ultrasonic vibration assistance on the SiC wafer material were determined.
The experimental results revealed that when the thickness of the SiC wafer workpiece was 0.42 mm, a better result was obtained when ultrasonic vibration assistance was not applied than when it was. This was because in the processing without ultrasonic assistance, the lateral vibration of the wire electrode was small, meaning that the discharge phenomenon exhibited a parallel direction to the wire electrode; thus, the frequency of lateral discharge was not increased, and the wire electrode was operated for less time in the processing area. When using the most appropriate combination of processing parameters, the processing kerf width was 8% lower, the machining time was 22% shorter, and the material removal rate was 12% higher for nonassisted processing than for ultrasonic vibration-assisted processing.
When a SiC wafer workpiece with a thickness of 10.0 mm was used in the processing experiments, the opposite result was obtained processing with ultrasonic vibration assistance was better than that without. This was because the ultrasonic waves helped vibrate the wire electrode, and this added vibration accelerated the removal of debris, leading to less-concentrated discharge. When processing thicker SiC wafer workpieces by using ultrasonic vibration assistance with an appropriate combination of processing parameters led to 10% lower processing kerf width, 13% shorter machining time, and an 8% higher material removal rate when compared with processing without the assistance. The heat-affected depth was shallower, and a minimum heat-affected depth of 2 μm could be obtained.
關鍵字(中) ★ 線切割放電加工
★ 超音波輔助
★ SiC晶圓
關鍵字(英) ★ Ultrasonic Assistance
★ WEDM
★ SiC Wafer
論文目次 摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3文獻回顧 3
1-4 研究方法 6
第二章 理論基礎 7
2-1基本原理 7
2-1-1線切割放電加工之原理 7
2-1-2放電加工之材料去除機制 9
2-1-3線切割放電加工參數及其影響 12
2-1-4線切割放電加工之特性 15
2-2 超音波輔助加工原理 17
第三章 實驗流程與設備 18
3-1實驗流程 18
3-2實驗設備 21
3-2-1 CNC線切割放電加工機 21
3-2-2線電極 (Wire Electrode) 23
3-2-3工件材料 (Material) 23
3-2-4介電液 (Deionized Water) 24
3-2-5超音波振動刀把及發振控制器 (Ultrasonicator & Generator) 24
3-2-6超音波振幅量刀器 (Ultrasonic Tool Checker) 26
3-2-7示波器與電流鉤錶 (Oscilloscope & Current Clamp Meter) 26
3-2-8光學顯微鏡 (Optical Microscope) 27
3-2-9超音波清洗機 27
3-2-10鑲埋機 (Mounting Press Machines) 28
3-2-11金相研磨拋光機 (Grinding/Polishing Machine) 28
3-2-12掃描式電子顯微鏡(Scanning Electron Microscope) 29
3-3實驗設置 30
3-4量測方法 31
3-4-1材料移除率 (Material Removal Rate,MRR) 31
3-4-2加工槽寬度 (Kerf Width) 32
3-4-3電流量測 32
第四章 實驗結果與討論 33
4-1實驗參數選擇之探討 33
4-2 超音波輔助線切割放電加工對SiC晶圓加工之影響 36
4-2-1 開路電壓對於加工槽寬度之影響 36
4-2-2 線張力段數對加工槽寬度之影響 41
4-2-3 超音波功率對加工槽寬度之影響 47
4-2-4 工件厚度對加工槽寬度之影響 52
4-3 熱影響區之探討 56
第五章 結論 63
未來展望 65
參考文獻 66
參考文獻 [1] 林義暐、鄭貴元、呂文鎔、丁嘉仁、張高德,「碳化矽裂片技術淺談與其產業應用」,機械工業雜誌,6月號471期,民國91年。
[2] 張瑞慶譯,「非傳統加工」,高立圖書出版社,84年。
[3] 簡剛佑,「超音波振動輔助線切割放電及電解加工多晶矽材料之研究」,國立中央大學,碩士論文,民國99年。
[4] 蘇品書譯,線切割放電加工,復漢出版社,民國89年。
[5] 李世璋,「高功率超音波振動輔助線切割放電加工 SKD61 材料之研究」國立中央大學,碩士論文,民國110年。
[6] Y. F. Luo, C. G. Chen, & Z. F. Tong, “Investigation of silicon wafering by wire EDM”, Journal of Materials Science, Vol.27, pp.5805-5810, 1992.
[7] Z.N. Guo, T. C. Lee, T.M. Yue, & W.S. Lau, “A Study of Ultrasonic-aided Wire Electrical Discharge Machining”, Journal of Materials Processing Technology, Vol.63, pp.823-828, 1997.
[8] Y. Uno, A. Okada, Y. Okamoto, & T. Hirano, “High performance slicing method of monocrystalline silicon ingot by wire EDM”, Initiatives of Precision Engineering at the Beginning of a Millennium, pp.219-223, 2002.
[9] T. Kato, T. Noro, H. Takahashi, S. Yamaguchi, & K. Arai, “ Characterization of electric discharge machining for silicon carbide single crystal”, Material Science Forum,Vol.600, pp.855-858, 2009.
[10] D. Rakwal, S. Heamawatanachai, P. Tathireddy, F. Solzbacher, & E. Bamberg, “Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining”, Microsystem Technologies, Vol.15, pp.789-797, 2009.
[11] A. Okada, Y. Uno, M. Nakazawa, & T. Yamauchi, “Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation”, CIRP Annals, Vol.59, pp.231-234, 2010.
[12] Y. Okamoto, Y. Kimura, A. Okada, Y. Uno, & J. Ohya, T. Yamauchi, “ Challenge to development of functional multi-wire EDM slicing method using wire electrode with track-shaped section”, Key Engineering Materials, Vol.523, pp.287-292, 2012.
[13] H. Yamada, S. Yamaguchi, N. Yamamoto, & T. Kato, “Cutting speed of electric discharge machining for SiC ingot”, Materials Science, Vol.717, pp.861-864, 2012.
[14] A. Kimura, Y. Okamoto, A. Okada, J. Ohya, & T.Yamauchi, “Fundamental study on multi-wire EDM slicing of SiC by wire electrode with track-shaped section”, Procedia CIRP, Vol.6, pp.232-237, 2013.
[15] Y. Zhao, M. Kuneida, & K. Abe, “ Study of EDM cutting of single crystal silicon carbide”, Precision Engineering, Vol.38, pp.92-99, 2014.
[16] P. Radhakrishnan, L. Vijayaraghavan, & N. Ramesh Babu, “Experimental Study on Material Removal Capability with Vibration-assisted WEDM”, Applied Mechanics and Materials, Vol.798, pp.362-366, 2015.
[17] Y. Zhao, M. Kunieda, & K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects”, Journal of Materials Processing Technology, Vol.236, pp.138-147, 2016.
[18] S. Habib, & A. Okada, “Study on the movement of wire electrode during fine wire electrical discharge machining process”, Journal of Materials Processing Technology, Vol.227, pp.147-152, 2016.
[19] P. Radhakrishnan, L. Vijayaraghavan, & N. Ramesh Babu, “Assessment of material removal capability with vibration-assisted wire electrical discharge machining”, Journal of Manufacturing Processes, Vol.26, pp.323-329, 2017.
[20] H. Bisaria, & P. Shandilya, “Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 super alloy”, Materials and Manufacturing Processes, Vol.34, pp.83-92, 2019.
[21] X. Chu, X. Zeng, W. Zhuang, W. Zhou, X. Quan, & T. Fu, “Vibration assisted high-speed wire electric discharge machining for machining surface microgrooves”, Journal of Manufacturing Processes, Vol.44, pp.418-426, 2019.
[22] P. Nakwong, & A. Muttamara, “Effect of Frequency to Ultrasonic Vibration-Assisted Wire-EDM”, Key Engineering Materials, Vol.814, pp.127-131, 2019.
[23] R. Izamshah, M. Akmal, M.H. Ibrahim, M.S. Kasim, S. Ding, M.H. Nawi, & M.S. Noorazizi, “Development of Ultrasonic Pulsation Wire Electrical Discharge Turning Device for Micro/Nano Medical Part Manufacturing”, International Journal of Nanoelectronics and Materials, Vol.13, pp.363-378, 2020.
[24] S. Kumar, S. Grover, & R.S.Walia, “Evaluation of Cutting Rate for Ultrasonic Work Piece Vibration Assisted Wire-EDM under Varying Amplitude of Vibration”, In Materials Science Forum, Vol.979, pp.149-156, 2020.
[25] Y. Masahiro, H. Ryuichiro, A. Kazuma, M. Soichiro, & K. Tomohiko, “Study on Slicing of Conductive SiC Ingot by Oil and Water type WEDM”, Procedia CIRP, Vol.113, pp155-159, 2022.
[26] 倉藤尚雄、鳳承三郎著,鄒大鈞譯,放電加工,復漢出版社,民國88年。
[27] 葉金璋,「線放電切割與電解磨削應用於多晶矽晶碇之加工特性研究」,國立中央大學,博士論文,民國101年。
[28] 許世勳,「大面積放電加工技術之研究」,國立中央大學,碩士論文,民國101年。
[29] 唐文聰,精密機械加工原理,全華圖書,民國93年。
[30] 張渭川編譯,「放電加工的結構與實用技術」,全華圖書,民國90年。
[31] J. Jeykrishnan, B.V. Ramnath, C. Elanchezhian, & S. Akilesh, “Parametric analysis on Electro-chemical machining of SKD-12 tool steel”, Materials Today: Proceedings, Vol.4, pp.3760-3766, 2017.
[32] A.R. Motorcu, E. Ekici, & A. Kus, “Investigation of the WEDM of Al/B 4 C/Gr reinforced hybrid composites using the Taguchi method and response surface methodology”, Science and Engineering of Composite Materials, Vol.23, pp.435-445, 2016.
[33] S. Di, X. Chu, D. Wei, Z. Wang, G. Chi, & Y. Liu, “Analysis of kerf width in micro-WEDM”, International Journal of Machine Tools and Manufacture, Vol.49, pp.788-792, 2009.
指導教授 崔海平 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明