博碩士論文 109353003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.118.27.72
姓名 黃信睿(XIN-RUI HUANG)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 超音波輔助添加鋁粉於放電加工氧化鋯陶瓷之研究
(Ultrasonic Vibration-Assisted Electrical Discharge Machining on Zirconia Ceramics by Adding Aluminum Powder)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
★ 超音波輔助磨削AGC玻璃加工之研究★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 由於陶瓷具有高硬度、高強度、耐磨耗、易脆等加工特性,使其難以採傳統之切削方式加工,放電加工 (EDM; Electrical Discharge Machining) 加工過程中不會受到材料機械性質影響,故本實驗採超音波輔助複合介電液中添加鋁粉的方式對二氧化鋯陶瓷進行放電加工實驗,加工參數為超音波功率段數(Ultrasonic Power Level)、高壓電流(High Voltage Current)、放電週期時間(Pulse Duration)與低壓電流(Low Voltage Current) ,以了解各個實驗參數對二氧化鋯陶瓷工件放電加工結果之影響,而加工品質特性則包括有加工時間、加工深度、溝槽槽寬、電極損耗量及表面粗糙度,實驗後係以影像測定儀對加工深度進行量測,再以雷射共軛焦表面形貌量測儀進行表面粗糙度及加工槽寬的量測,另使用掃描式電子顯微鏡觀察加工後表面形貌,使用X射線能量散布分析儀對加工區元素進行分析,探討各加工參數對二氧化鋯陶瓷放電加工之加工品質特性之影響。
實驗之結果顯示,在超音波功率輔助下,利用其泵吸作用有助於添加鋁粉之介電液進入加工區域內及利於排渣,降低加工過程中集中放電的發生,能獲得較佳加工後之工件表面粗糙度,且高壓電流與低壓電流大小對加工時間、加工深度、加工槽寬有顯著之影響,而放電週期時間則對表面粗糙度有顯著之影響,於本研究最佳的加工參數組合下,即為超音波功率2段、高壓電流2.4A、放電週期時間50μs及低壓電流1A,獲得1.23μmRa之加工後表面粗糙度,比超音波功率段數0時之表面粗糙度1.41μmRa下降了12.7%,本實驗結果可作為後續加工非導電材料之參考依據。
摘要(英) Due to their high hardness, high strength, favorable wear resistance, and brittleness, ceramics are difficult to process by using conventional cutting methods. In electrical discharge machining (EDM), the mechanical properties of the material being machined do not affect the machining. This experiment was conducted to investigate the effect of adding aluminum powder to a composite dielectric fluid used in the ultrasonic vibration assisted EDM of zirconia ceramic. The effects of processing parameters ultrasonic power level, high voltage current, pulse duration, and low voltage current on the results of EDM for zirconia ceramic workpieces were investigated. The quality characteristics of the machining included the machining time, machining depth, kerf width, electrode wear quantity, and surface roughness.
The machining depth was measured using an optical measuring instrument, whereas the surface roughness and kerf width were measured using laser scanning confocal microscopy. The surface morphology after machining was observed using a scanning electron microscope, and the elements in the processing zone were analyzed using an energy-dispersive X-ray spectrometer.
The experimental results revealed that when ultrasonic power assistance was applied, the pumping effect facilitated the infiltration of the machining zone by the aluminum powder-enhanced dielectric fluid and helped discharge debris. This led to less-concentrated discharge during EDM, resulting in more favorable surface roughness of the machined workpieces. Additionally, the magnitudes of the high voltage current and low voltage current significantly affected the machining time, machining depth, and kerf width, and the pulse duration strongly affected the surface roughness.
The optimal combination of processing parameters was determined to be an ultrasonic power level of 2, high voltage current of 2.4 A, pulse duration of 50 μs, and low voltage current of 1 A. This combination resulted in a post machining surface roughness of 1.23 μmRa. The surface roughness achieved without any ultrasonic power stages was 1.41 μmRa; thus, the assistance achieved a 12.7% reduction in roughness. The results of this experiment can serve as a reference for the subsequent processing of nonconductive materials.
關鍵字(中) ★ 超音波輔助
★ 放電加工
★ 二氧化鋯
★ 添加鋁粉末
關鍵字(英) ★ Ultrasonic Assistance
★ Electrical Discharge Machining
★ Zirconia Ceramic
★ Aluminum Powder addition
論文目次 摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 3
1-3文獻回顧 4
1-3-1放電加工文獻回顧 4
1-3-2超音波輔助加工文獻回顧 5
1-3-3添加粉末文獻回顧 7
1-4 研究方法 8
第二章 理論基礎 9
2-1放電加工原理 9
2-1-1放電加工簡介 9
2-1-2材料移除之機制[25, 30] 10
2-1-3放電加工參數及其影響 13
2-1-4放電加工參數之特性 17
2-2 超音波輔助加工原理[37] 20
2-3超音波振動輔助放電加工之原理[29, 30] 20
2-4 添加粉末改善加工特性之原理 22
2-5輔助電極法之原理 23
第三章 實驗流程與設備 24
3-1實驗簡介 24
3-2實驗設備 24
3-2-1放電加工機 24
3-2-2電子天平 25
3-2-3電磁加熱攪拌器 26
3-2-4 超音波洗淨機 26
3-2-5掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 27
3-2-6 能量散射X射線譜(Energy-dispersive X-ray spectroscopy, EDS) 27
3-2-7超音波主軸 28
3-2-8 超音波振幅量測器 28
3-2-9金相研磨拋光機 29
3-2-10顯微影像量測儀 29
3-2-11雷射共軛焦表面形貌量測儀(Laser Scanning Confocal Microscopy, LSCM) 30
3-2-12示波器(Oscilloscope) 30
3-3實驗材料 31
3-3-1二氧化鋯陶瓷 31
3-3-2片狀紅銅電極 32
3-3-3 輔助電極 33
3-3-4 粉末性質 33
3-3-5介電液 34
3-4實驗設置 34
3-5實驗流程及方法 36
3-6量測方法 41
3-6-1加工時間 (Machining Time) 41
3-6-2電極損耗量(Electrode Quantity;EWQ) 41
3-6-3加工深度(Machining Depth) 41
3-6-4加工槽寬度(Kerf Width) 42
3-6-5 表面粗糙度(Surface Roughness) 43
3-6-6 電流波形量測 44
第四章 實驗結果與討論 45
4-1超音波功率對放電加工結果之影響 45
4-2高壓電流(HV Current) 對放電加工結果之影響 56
4-3放電週期時間對放電加工結果之影響 66
4-4低壓電流(LV Current) 對放電加工結果之影響 76
第五章 結論與未來展望 88
5-1結論 88
5-2未來展望 90
參考文獻 91
參考文獻 [1] Vereschaka, A., Batako, A., Krapostin, A., Sitnikov, N., & Oganyan, G. “Improvement in reliability of ceramic cutting tool using a damping system and nano-structured multi-layered composite coatings”, Procedia CIRP, 63, pp.563-568, 2017.
[2] Bilal, A., Jahan, M. P., Talamona, D., & Perveen, A. “Electro-discharge machining of ceramics: A review”, Micromachines, 10(1), p.10, 2018.
[3] Jahan, M., Rahman, M., & Wong, Y. “A review on the conventional and micro-electrodischarge machining of tungsten carbide”, International journal of machine tools and manufacture, 51(12), pp.837-858, 2011.
[4] 許世勳,「大面積放電加工技術之研究」,國立中央大學,碩士論文,2012。
[5] 楊振坤,「添加石墨粉末之快速穿孔放電加工特性研究」,國立中央大學,碩士論文,2000。
[6] 鄭元傑,「碳化鎢電極微放電加工特性之研究」,國立高雄應用科技大學,碩士論文,2008。
[7] Kansal, H., Singh, S., & Kumar, P. “Parametric optimization of powder mixed electrical discharge machining by response surface methodology”, Journal of materials processing technology, 169(3), pp.427-436, 2005.
[8] Tani, T. “Machining Phenomena in EDM Insulating Ceramics using Powder Suspended Working Oil”. Paper presented at the Proceeding of International Symposium for Electro-Machining (ISEM XIII). 2001.
[9] Mohri, N., Fukuzawa, Y., Tani, T., Saito, N., & Furutani, K. “Assisting electrode method for machining insulating ceramics”, CIRP annals, 45(1), pp.201-204, 1996.
[10] Ho, K., & Newman, S. “State of the art electrical discharge machining (EDM)”, International journal of machine tools and manufacture, 43(13), pp.1287-1300, 2003.
[11] Soni, J. “Microanalysis of debris formed during rotary EDM of titanium alloy (Ti 6A1 4V) and die steel (T 215 Cr12)”, Wear, 177(1), pp.71-79, 1994.
[12] Endo, T., Tsujimoto, T., & Mitsui, K. “Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge”, Precision Engineering, 32(4), pp.269-277, 2008.
[13] Liao, Y., Wu, P., & Liang, F. “Study of debris exclusion effect in linear motor equipped die-sinking EDM process”, Procedia CIRP, 6, pp.123-128, 2013.
[14] Zhixin, J., Jianhua, Z., & Xing, A. “Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramics”, Journal of materials processing technology, 53(3-4), pp.811-816, 1995.
[15] König, W., Dauw, D., Levy, G., & Panten, U. “EDM-future steps towards the machining of ceramics”, CIRP annals, 37(2), pp.623-631, 1988.
[16] Mohri, N., Fukuzawa, Y., Tani, T., & Sata, T. “Some considerations to machining characteristics of insulating ceramics-towards practical use in industry”, CIRP annals, 51(1), pp.161-164, 2002.
[17] Lee, S. H., & Li, X. “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide”, Journal of materials processing technology, 139(1-3), pp.315-321, 2003.
[18] Chen, Y. F., Lin, Y. J., Lin, Y. C., Chen, S. L., & Hsu, L. R. “Optimization of electrodischarge machining parameters on ZrO2 ceramic using the Taguchi method”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(2), pp.195-205, 2010.
[19] Lin, Y. J., Lin, Y. C., Wang, A. C., Wang, D. A., & Chow, H. M. “Machining characteristics of EDM for non-conductive ceramics using adherent copper foils”, Advanced Materials Research, 154, pp.794-805, 2011.
[20] Hösel, T., Müller, C., & Reinecke, H. “Spark erosive structuring of electrically nonconductive zirconia with an assisting electrode”, CIRP Journal of Manufacturing Science and Technology, 4(4), pp.357-361, 2011.
[21] Shinde, B., & Pawade, R. “Study on analysis of kerf width variation in WEDM of insulating zirconia”, Materials and Manufacturing Processes, 36(9), pp.1010-1018, 2021.
[22] Rashid, A., Perveen, A., & Jahan, M. P. “Understanding novel assisted electrode from a theoretical and experimental perspectives for EDM of aluminum nitride ceramics”, The International Journal of Advanced Manufacturing Technology, 116(9), pp.2959-2973, 2021.
[23] Machno, M., Trajer, M., Bizoń, W., & Czeszkiewicz, A. “A Study on Accuracy of Micro-Holes Drilled in Ti-6Al-4V Alloy by Using Electrical Discharge Machining Process”, Advances in Science and Technology Research Journal, 16(6), pp.55-72, 2022.
[24] Lee, T., Zhang, J., & Lau, W. “Machining of engineering ceramics by ultrasonic vibration assisted EDM method”, Material and Manufacturing Process, 13(1), pp.133-146, 1998.
[25] 黃俊曄,「放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響」,國立中央大學,碩士論文,2000。
[26] Gao, C., & Liu, Z. “A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration”, Journal of materials processing technology, 139(1-3), pp.226-228, 2003.
[27] Praneetpongrung, C., Fukuzawa, Y., Nagasawa, S., & Yamashita, K. “Effects of the EDM combined ultrasonic vibration on the machining properties of Si3N4”, Materials Transactions, 51(11), pp.2113-2120, 2010.
[28] Lin, Y. C., Chow, H. M., Tsui, H. P., & Chen, Y. F. “Study on ultrasonic vibration in gas and optimization of a novel process of EDM”, Advanced Materials Research, 675, pp.365-369, 2013.
[29] 沈哲墉,「超音波輔助電化學加工微孔陣列之研究」,國立中央大學,碩士論文,2020。
[30] 李世璋,「高功率超音波振動輔助線切割放電加工SKD61材料之研究」,國立中央大學,碩士論文,2021。
[31] Mollik, M. S., Saleh, T., Nor, K. A. B. M., & Ali, M. S. M. “A machine learning-based classification model to identify the effectiveness of vibration for μEDM”, Alexandria Engineering Journal, 61(9), pp.6979-6989, 2022.
[32] Yan, B. H., & Chen, S. L. “Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with alumina powder”, Nippon Kinzoku Gakkaishi (1952), 58(9), pp.1067-1072, 1994.
[33] Chow, H. M., Yan, B. H., Huang, F. Y., & Hung, J. C. “Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining”, Journal of materials processing technology, 101(1-3), pp.95-103, 2000.
[34] 王陳鴻,「加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響」,國立中央大學,碩士論文,2000。
[35] TANI, T., FUKUZAWA, Y., NANBU, K., & MOHRI, N. “粉末混入加工液による絶縁性セラミックスの放電加工現象”, 電気加工学会誌, 36(81), pp.39-46, 2002.
[36] Zhao, W. S., Meng, Q. G., & Wang, Z. L. “The application of research on powder mixed EDM in rough machining”, Journal of materials processing technology, 129(1-3), pp.30-33, 2002.
[37] 李培豪,「超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究」,國立中央大學,碩士論文,2019。
[38] Rajesh, J., & Giridharan, A. “A study on influence of peak current and ultrasonic vibration during powder mixed electrical discharge machining process”. Paper presented at the IOP Conference Series: Materials Science and Engineering. 2020.
[39] 羅元廷,「超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究」,國立中央大學,碩士論文,2021。
[40] Schubert, A., Bui, V. D., Schaarschmidt, I., Berger, T., & Martin, A. “Developments in Powder Mixed EDM and its perspective Application for targeted Surface Modification”, Procedia CIRP, 113, pp.100-119, 2022.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明